skip to main content


This content will become publicly available on April 1, 2025

Title: Limited but specific engagement of the mature language network during linguistic statistical learning
Abstract

Statistical learning (SL) is the ability to detect and learn regularities from input and is foundational to language acquisition. Despite the dominant role of SL as a theoretical construct for language development, there is a lack of direct evidence supporting the shared neural substrates underlying language processing and SL. It is also not clear whether the similarities, if any, are related to linguistic processing, or statistical regularities in general. The current study tests whether the brain regions involved in natural language processing are similarly recruited during auditory, linguistic SL. Twenty-two adults performed an auditory linguistic SL task, an auditory nonlinguistic SL task, and a passive story listening task as their neural activation was monitored. Within the language network, the left posterior temporal gyrus showed sensitivity to embedded speech regularities during auditory, linguistic SL, but not auditory, nonlinguistic SL. Using a multivoxel pattern similarity analysis, we uncovered similarities between the neural representation of auditory, linguistic SL, and language processing within the left posterior temporal gyrus. No other brain regions showed similarities between linguistic SL and language comprehension, suggesting that a shared neurocomputational process for auditory SL and natural language processing within the left posterior temporal gyrus is specific to linguistic stimuli.

 
more » « less
Award ID(s):
2141007
PAR ID:
10527543
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Cerebral Cortex
Date Published:
Journal Name:
Cerebral Cortex
Volume:
34
Issue:
4
ISSN:
1047-3211
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    This study aimed to examine early specialization of brain regions for phonological and semantic processing of spoken language in young children. Thirty‐five typically developing children aged from 5 to 6 years performed auditory phonological (same sound judgment) and semantic (related meaning judgment) word‐level tasks. Using functional magnetic resonance imaging, we examined specialization within the language network, by conducting three levels of analysis. First, we directly compared activation between tasks and found a greater sound judgment as compared to meaning judgment activation in left superior temporal gyrus (STG) and supramarginal gyrus. In contrast, greater meaning judgment as compared to sound judgment task activation was found in left middle temporal gyrus (MTG). Second, we examined the brain‐behavior correlations and found that phonological skill was correlated with the task difference in activation in left superior temporal sulcus, whereas semantic skill was correlated with the task difference in activation in left MTG. Third, we compared between two experimental conditions within each task and found a parametric effect in left STG for the sound judgment task, and a parametric effect in left MTG for the meaning judgment task. The results of this study indicate that, by the age of 5–6 years, typically developing children already show some specialization of temporo‐parietal brain regions for phonological and semantic processes. However, there were no task differences in the left inferior frontal gyrus suggesting that the frontal cortex may not yet be specialized in this age range, which is consistent with the delayed maturation of the frontal cortex.

     
    more » « less
  2. Abstract

    Socioeconomic status (SES) has been shown to influence language skills, with children of lower SES backgrounds performing worse on language assessments compared to their higher SES peers. While there is abundant behavioral research on the effects of SES, whether there are differences in the neural mechanisms used to support language skill is less established. In this study, we examined the relation between maternal education (ME), a component of SES, and neural mechanisms of language. We focused on Kindergarten children, at the beginning of formal reading education, and on a pre‐reading skill, phonological awareness—the ability to distinguish or manipulate the sounds of language. We determined ME‐related differences in neural activity by examining a skill‐matched sample of typically achieving 5‐year‐old children as they performed a rhyme judgment task. We examined brain lateralization in two language processing regions, the inferior frontal gyrus (IFG) and superior temporal gyrus (STG). In the IFG, lateralization was related to ME but not skill: children with low ME showed bilateral activation compared to children with higher ME who showed leftward lateralization. In the STG, there was a skill by ME interaction on lateralization, such that children with high ME showed a positive relation between rightward lateralization and skill and children with low ME showed a positive relation between leftward lateralization and skill. Thus, we demonstrated ME is related to differences in neural recruitment during language processing, yet this difference in recruitment is not indicative of a deficit in linguistic processing in Kindergarten children.

     
    more » « less
  3. null (Ed.)
    Author Summary Previous studies of local activity levels suggest that both shared and distinct neural mechanisms support the processing of symbolic (Arabic digits) and nonsymbolic (dot sets) number stimuli, involving regions distributed across frontal, temporal, and parietal cortices. Network-level characterizations of functional connectivity patterns underlying number processing have gone unexplored, however. In this study we examined the whole-brain functional architecture of symbolic and nonsymbolic number comparison. Stronger community membership was observed among auditory regions during symbolic processing, and among cingulo-opercular/salience and basal ganglia networks for nonsymbolic. A dual versus unified fronto-parietal/dorsal attention community organization was observed for symbolic and nonsymbolic formats, respectively. Finally, the inferior temporal gyrus and left intraparietal sulcus, both thought to be preferentially involved in processing number symbols, demonstrated robust differences in community membership between formats. 
    more » « less
  4. Abstract

    Are the brain bases of language comprehension the same across all human languages, or do these bases vary in a way that corresponds to differences in linguistic typology? English and Mandarin Chinese attest such a typological difference in the domain of relative clauses. Using functional magnetic resonance imaging with English and Chinese participants, who listened to the same translation-equivalent story, we analyzed neuroimages time aligned to object-extracted relative clauses in both languages. In a general linear model analysis of these naturalistic data, comprehension was selectively associated with increased hemodynamic activity in left posterior temporal lobe, angular gyrus, inferior frontal gyrus, precuneus, and posterior cingulate cortex in both languages. This result suggests the processing of object-extracted relative clauses is subserved by a common collection of brain regions, regardless of typology. However, there were also regions that were activated uniquely in our Chinese participants albeit not to a significantly greater degree. These were in the temporal lobe. These Chinese-specific results could reflect structural ambiguity-resolution work that must be done in Chinese but not English object-extracted relative clauses.

     
    more » « less
  5. Abstract

    Modulation of vocal pitch is a key speech feature that conveys important linguistic and affective information. Auditory feedback is used to monitor and maintain pitch. We examined induced neural high gamma power (HGP) (65–150 Hz) using magnetoencephalography during pitch feedback control. Participants phonated into a microphone while hearing their auditory feedback through headphones. During each phonation, a single real‐time 400 ms pitch shift was applied to the auditory feedback. Participants compensated by rapidly changing their pitch to oppose the pitch shifts. This behavioral change required coordination of the neural speech motor control network, including integration of auditory and somatosensory feedback to initiate change in motor plans. We found increases in HGP across both hemispheres within 200 ms of pitch shifts, covering left sensory and right premotor, parietal, temporal, and frontal regions, involved in sensory detection and processing of the pitch shift. Later responses to pitch shifts (200–300 ms) were right dominant, in parietal, frontal, and temporal regions. Timing of activity in these regions indicates their role in coordinating motor change and detecting and processing of the sensory consequences of this change. Subtracting out cortical responses during passive listening to recordings of the phonations isolated HGP increases specific to speech production, highlighting right parietal and premotor cortex, and left posterior temporal cortex involvement in the motor response. Correlation of HGP with behavioral compensation demonstrated right frontal region involvement in modulating participant's compensatory response. This study highlights the bihemispheric sensorimotor cortical network involvement in auditory feedback‐based control of vocal pitch.Hum Brain Mapp 37:1474‐1485, 2016. © 2016 Wiley Periodicals, Inc.

     
    more » « less