skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Lessons Learned in Adopting a New, Patent-Based Doctoral Pathway Model
This Work in Progress paper describes the lessons learned from a new pathway for doctoral candidates in STEM programs allowing capstone degree requirements to be fulfilled by research culminating in a patent application. The Pathways to Entrepreneurship (PAtENT) model aims to bring greater alignment between doctoral degrees and the rapidly changing employment landscape. Given that seventy percent of PhDs exit academic careers within three years [1], creating doctoral pathways that align with multiple career options is an imperative. We describe the PAtENT model, rationale and goals. Components of the pilot program will be explained through a curriculum alignment describing key activities that respond to recommendation for STEM graduate programs identified by the National Academies of Sciences, Engineering and Medicine [2]: developing scientific and technological literacy and conducting original research; and developing leadership, communication, and professional competencies. After two years of development and implementation, we are also able to discuss lessons learned and strategies for scaling the model. We present findings from students in the program and a reflective interview of the project leadership team. In order to adopt this innovative education model, students, faculty, and universities need understanding of career pathways and opportunities beyond traditional academic pursuits.  more » « less
Award ID(s):
1954978
PAR ID:
10527566
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
ASEE 23rd Annual Conference and Exposition
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Current structures of STEM graduate programs raise questions about addressing graduates’ interest in multiple career paths, and how programs prepare graduates for positions increasingly available in varied occupations. This problem is addressed through an innovative doctoral program in engineering, Pathways to Entrepreneurship (PAtENT), which works to develop a scalable alternative student-centered framework. This research explores how this program responds to calls for graduate STEM education to address changes in science and engineering, the nature of the workforce, career goals, and how program components build an entrepreneurial mindset. A mixed-methods design includes a curriculum analysis showing alignment of program components to recommendations for Ph.D. STEM programs from the National Academy of Sciences, Engineering, and Medicine. Direct measures include surveys and interviews developed for current doctoral students and faculty to describe students’ and faculty perspectives about program components, particularly entrepreneurship and the patent process. The curriculum analysis shows strong alignment of the PAtENT program components and activities to the ten elements of the National Academies’ recommendations. A survey of graduate students in engineering, computing, and business show strong measures in engineering and entrepreneurial self-efficacy. Interviews of program participants and faculty demonstrate strong interest in patents and developing entrepreneurship. This innovative program in engineering focusing on obtaining a patent as a capstone shows potential to reform doctoral studies, so candidates are prepared not only for academic careers but a range of industry and government work environments. This work will lead to development of a model for other graduate STEM programs. 
    more » « less
  2. This Work in Progress (WIP) paper describes the development of a middle school program focused on an integrated STEM architectural engineering design project and exploration of career pathways. The current engineering workforce is increasingly aging, needing new engineering graduates to meet the industry demands. It is crucial to create inclusive educational programs in STEM to expose and connect with youths from diverse backgrounds, especially the demographics that are underrepresented, in STEM career paths. Middle school is a pivotal time for generating students’ awareness of and promoting pathways into STEM careers; however, opportunities to engage in engineering are often lacking or nonexistent, particularly for low-income students. Additionally, low-income students may bring particular experiences and skills from their backgrounds to engineering that may increase the innovation of engineering solutions. These assets are important to recognize and cultivate in young students. The Middle School Architectural Engineering Pilot Program (MSAEPP), drawing from social cognitive career theory and identity-based motivation, is an intervention designed to affect STEM-related content and STEM identities, motivation, and career goals for low-income students using relatable topics within the building industry. The focus on architectural engineering activities is because buildings, and the industry they represent, touch everyone’s lives. The MSAEPP is planned to be implemented through the Talent Search Programs at middle schools in Pennsylvania. The Talent Search Program is one of the Federal TRIO Programs dedicated to assisting high school students in furthering their education. Penn State Talent Search Programs serve 22 schools in 8 impoverished school districts. The pilot program engages middle school students (seventh and eighth grade) in architectural engineering-related lessons and activities, by exploring engineering identities interactions with architectural engineering industry professionals, and by planning potential career pathways in architectural engineering and other STEM careers with Talent Search Counselors. The purpose of this paper is to present the background and process used in this funded NSF project for developing the suite of architectural engineering related lessons and activities and the research plan for answering the research question: How do the combination of meaningful engineering learning, exposure to professional engineers, and career planning, focused on building industry engineering applications, increase identity-based motivation of students from low-income households and marginalized students in pursuing STEM careers? Answering this question will inform future work developing interventions that target similar goals and will validate and expand the identity-based motivation framework. Keywords: middle school, identity, motivation, informal education. 
    more » « less
  3. This Work in Progress (WIP) paper describes the development of a middle school program focused on an integrated STEM architectural engineering design project and exploration of career pathways. The current engineering workforce is increasingly aging, needing new engineering graduates to meet the industry demands. It is crucial to create inclusive educational programs in STEM to expose and connect with youths from diverse backgrounds, especially the demographics that are underrepresented, in STEM career paths. Middle school is a pivotal time for generating students’ awareness of and promoting pathways into STEM careers; however, opportunities to engage in engineering are often lacking or nonexistent, particularly for low-income students. Additionally, low-income students may bring particular experiences and skills from their backgrounds to engineering that may increase the innovation of engineering solutions. These assets are important to recognize and cultivate in young students. The Middle School Architectural Engineering Pilot Program (MSAEPP), drawing from social cognitive career theory and identity-based motivation, is an intervention designed to affect STEM related content and STEM identities, motivation, and career goals for low-income students using relatable topics within the building industry. The focus on architectural engineering activities is because buildings, and the industry they represent, touch everyone’s lives. The MSAEPP is planned to be implemented through the Talent Search Programs at middle schools in Pennsylvania. The Talent Search Program is one of the Federal TRIO Programs dedicated to assisting high school students in furthering their education. Penn State Talent Search Programs serve 22 schools in 8 impoverished school districts. The pilot program engages middle school students (seventh and eighth grade) in architectural engineering related lessons and activities, by exploring engineering identities interactions with architectural engineering industry professionals, and by planning potential career pathways in architectural engineering and other STEM careers with Talent Search Counselors. The purpose of this paper is to present the background and process used in this funded NSF project for developing the suite of architectural engineering related lessons and activities and the research plan for answering the research question: How does the combination of meaningful engineering learning, exposure to professional engineers, and career planning, focused on building industry engineering applications, increase identity-based motivation of students from low-income households and marginalized students in pursuing STEM careers? Answering this question will inform future work developing interventions that target similar goals and will validate and expand the identity-based motivation framework. Keywords: middle school, identity, motivation, informal education. 
    more » « less
  4. An interdisciplinary team of faculty, staff, and students at Illinois State University is partnering with the Chicago Public Schools district (CPS) and non-profit Community-Based Organizations in four Chicago neighborhoods to create a new after-school STEM program known as SUPERCHARGE. Funded by NSF, the primary purpose of the project is to increase the number of students from underrepresented groups who pursue STEM fields at the postsecondary level. Faculty from STEM and STEM education program areas as well as the National Center for Urban Education at Illinois State University comprise the leadership team for the project. Guided by the National Research Council’s STEM Learning Ecosystem Model, SUPERCHARGE will contribute to the disruption of inequities that hinder access to STEM career pipelines for participants by serving as a bridge between informal high school academic experiences, STEM-related higher education programs, and STEM-related career pathways. Research to determine the impact of the program on students' interest, understanding, and self-efficacy towards STEM careers, as well as teachers and undergraduate students’ understanding of promoting change, will also be conducted. The Partnerships in Education and Resilience (PEAR) Common Instrument for students and teachers, and interviews with stakeholders are being used to support data gathering and program feedback. These data sources will be used for program assessment and future research. 
    more » « less
  5. This Work in Progress paper describes the development and implementation of a new pathway for doctoral candidates in STEM programs to satisfy their capstone degree requirements that has the potential to modernize the STEM Ph.D. The model, Pathways to Entrepreneurship, aims to bring greater alignment between doctoral degrees and the rapidly changing employment landscape. Programmatic and curricular innovations to the current Ph.D. model are described along with the rationale. Project goals are to develop an alternative roadmap for STEM doctoral students, that is scalable, and to investigate pedagogical implications of these innovations, for doctoral education and for broadening participation of women, veteran students, and those traditionally underrepresented in STEM. We present the assessment approach to evaluate program efficacy, and share baseline information regarding student self-efficacy toward entrepreneurship. The aim of this project is to increase entrepreneurship rates among graduates, and to propagate evidence-based practices to STEM graduate programs. Should our innovations be adopted by other programs based on our anticipated findings, a separate Doctor of Innovation track might emerge as a viable alternative to the current Doctor of Philosophy track. 
    more » « less