skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Redox-gated recognition of dihydrogen phosphate using a ferrocene-tethered non-symmetric aryl-triazole pentad
Anions play many roles in our environment. Consequently, the development of synthetic receptors capable of targeted anion binding is of ongoing importance. While many such receptors are known, simplified designs and measurement approaches are always beneficial. Herein, we report the synthesis of a non-symmetric aryl-triazole pentad receptor appended with a single ferrocene, its electrochemistry, and the selective binding to dihydrogen phosphate (H2PO4–) anions of its oxidized form over various environmentally prevalent anions (HSO4–, Cl–, NO3–). The receptor was constructed using a modular architecture with simple installation of a ferrocene unit using click chemistry. Electrochemical analysis on the receptor revealed that addition of H2PO4– anion led to a shift in the redox peaks of the receptor (FcP) towards more negative potentials, indicating higher anion affinity was achieved after the ferrocene was oxidized to its cationic form (FcP+). This work verifies prior studies on the efficacy of cationic charge in simpler receptor design for the creation of functional host-guest systems.  more » « less
Award ID(s):
2305013
PAR ID:
10527647
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Taylor & Francis
Date Published:
Journal Name:
Supramolecular Chemistry
Volume:
34
Issue:
9-10
ISSN:
1061-0278
Page Range / eLocation ID:
339-347
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Electrochemically controlled redox-switchable polymerization uses an electric potential to bias the monomer selectivity of a catalyst. Many ferrocene-appended catalysts can exist in two oxidation states, a neutral reduced state and an oxidized cationic state. Electrochemical generation of the oxidized cationic state produces a charged species whose counteranion is determined by the identity of the supporting electrolyte anion. Herein, the role the counteranion has on monomer selectivity and polymerization kinetics is investigated. Minimal differences in monomer selectivity in the reduced state was found, however, in the oxidized state, the coordinating ability of the counteranion greatly influenced the rate of polymerization. How activity differences governed by the choice of electrolyte can be utilized to access desired diblock copolymers is also described. 
    more » « less
  2. Calix[4]pyrroles (CPs) and polyammonium azacrowns (ACs) are well-known receptors for anions. CPs bind anions by directional hydrogen bonds that do not always work well for aqueous analytes. The positive charge in polyammonium ACs allows for a stronger but non-directional anion-ammonium electrostatic attraction but lack selectivity. Bridging the gap between CPs and ACs could increase affinity and potentially preserve the selectivity of anion binding. We have synthesized a flexible calixpyrrole-azacrown near isosteric receptor and incorporated an environmentally sensitive dansyl fluorophore to enable fluorescence measurements. Anion binding was evaluated using NMR and fluorescence titrations. The isosteric receptor shows a strong affinity for aqueous phosphates and phosphonates (Na + salts) in the order HAsO 4 2− > H 2 PO 4 − > H 2 P 2 O 7 2− > glyphosate 2− > AMP − > methylphosphonate − ≫ ADP 2− or ATP 3− but does not bind halides. This is in stark contrast to CP which shows a strong preference for halides over oxyanions. The anion binding by the new receptor was accompanied by analyte-specific changes in fluorescence intensity and spectral width and by a wavelength shift. These parameters were used in qualitative and quantitative sensing of aqueous anions. By applying machine-learning algorithms, such as linear discriminant analysis and support vector machine linear regression, this one sensor can differentiate between 10 different analytes and accurately quantify herbicide glyphosate and methylphosphonate, a product of sarin, soman or cyclosarin hydrolysis. In fact, glyphosate can be quantified even in the presence of competing anions such as orthophosphate (LODs were ≤ 1 μM). 
    more » « less
  3. The first tetrakis-tetrathiafulvalene-calix[4]pyrrole (TTF-C[4]P) was reported in 2004. Early on it and related π-extended TTF-C[4]Ps were found to function as both anion receptors and as hosts for planar electron deficient neutral guests, including nitroaromatic explosives. Anion binding was found to occur with a 1 : 1 binding stoichiometry and to stabilise the cone C[4]P conformation, whereas planar electron deficient guests were bound in a cooperative 1 : 2 fashion to the 1,3-alternate conformer. Addition of strongly complexing anions was found to trigger release of the electron deficient guests concurrent with a conformational change to the cone form. Subsequent studies led to the discovery of anion-induced complexation with C 60 , and the finding that the resulting complexes would support fast photoinduced electron transfer events. Synthetic advances then led to the preparation of nonsymmetric TTF-C[4]Ps where a single moiety organises the receptor in either the 1,3-alternate conformation or the partial cone conformation, thus modifying both selectivity and sensitivity. TTF-C[4]P-based stimulus responsive systems, that rely on anions and cations as controlling inputs, have also been developed and studied in recent years. This review provides a summary of TTF-C[4]P-related chemistry. 
    more » « less
  4. Abstract Achieving selective molecular recognition of hydrophilic anions in water remains a formidable challenge due to the competitive nature of water and the high hydration energies of target anions such as sulfate. Here, we report the design, synthesis, and characterization of a simple dicationic tetralactam macrocycle (BPTL2⁺·2Cl⁻) capable of binding highly hydrated anions in water via charge‐assisted hydrogen bonding. Structural, spectroscopic, thermodynamic, and computational studies reveal that BPTL2⁺ exhibits a strong binding affinity for sulfate (Ka = 2892 M⁻¹), driven primarily by entropic gain from water release and reinforced by electrostatic and hydrogen bonding interactions. Single‐crystal X‐ray diffraction and DFT‐optimized structures confirm the formation of directional [N─H•••O] and [C─H•••O] hydrogen bonds. Comparative studies with a control macrocycle (6Na+•HCTL6−) that has a charge‐neutral binding cavity underscore the essential role of cationic charge in overcoming desolvation enthalpic penalties. The receptor displays anti‐Hofmeister selectivity, preferentially binding more hydrophilic anions. This work provides fundamental insights into the mechanisms of anion recognition in water. It establishes charge‐assisted hydrogen bonding as a powerful strategy for developing next‐generation receptors for sensing, separation, sequestration, transport, and catalysis in aqueous environments. 
    more » « less
  5. Hydrogen bonding is prevalent in biological systems, dictating a myriad of life-sustaining functions in aqueous environments. Leveraging hydrogen bonding for molecular recognition in water encounters significant challenges in synthetic receptors on account of the hydration of their functional groups. Herein, we introduce a water-soluble hydrogen bonding cage, synthesized via a dynamic approach, exhibiting remarkable affinities and selectivities for strongly hydrated anions, including sulfate and oxalate, in water. We illustrate the use of charge-assisted hydrogen bonding in amide-type synthetic receptors, offering a general molecular design principle that applies to a wide range of amide receptors for molecular recognition in water. This strategy not only revalidates the functions of hydrogen bonding but also facilitates the effective recognition of hydrophilic anions in water. We further demonstrate an unconventional catalytic mechanism through the encapsulation of the anionic oxalate substrate by the cationic cage, which effectively inverts the charges associated with the substrate and overcomes electrostatic repulsions to facilitate its oxidation by the anionic MnO4–. Technical applications using this receptor are envisioned across various technical applications, including anion sensing, separation, catalysis, medical interventions, and molecular nanotechnology. 
    more » « less