We propose and assess the effectiveness of novel immersive simulation-based learning (ISBL) modules for teaching and learning engineering economy concepts. The proposed intervention involves technology-enhanced problem-based learning where the problem context is represented via a three-dimensional (3D), animated discrete-event simulation model that resembles a real-world system or situation that students may encounter in future professional settings. Students can navigate the simulated environment in both low- and high-immersion modes (i.e., on a typical personal computer or via a virtual reality headset). The simulation helps contextualize and visualize the problem setting, allowing students to observe and understand the underlying dynamics, collect relevant data/information, evaluate the effect of changes on the system, and learn by doing. The proposed ISBL approach is supported by multiple pedagogical and psychological theories, namely the information processing approach to learning theory, constructivism theory, self-determination theory, and adult learning theory. We design and implement a set of ISBL modules in an introductory undergraduate engineering economy class. The research experiments involve two groups of students: a control group and an intervention group. Students in the control group complete a set of traditional assignments, while the intervention group uses ISBL modules. We use well-established survey instruments to collect data on demographics, prior preparation, motivation, experiential learning, engineering identity, and self-assessment of learning objectives based on Bloom’s taxonomy. Statistical analysis of the results suggests that ISBL enhances certain dimensions related to motivation and experiential learning, namely relevance, confidence, and utility. We also provide a qualitative assessment of the proposed intervention based on detailed, one-on-one user testing and evaluation interviews. 
                        more » 
                        « less   
                    
                            
                            Investigating the Impact of Learners’ Time Allocation in Immersive Simulation-Based Learning Environments
                        
                    
    
            With the increasing use of virtual simulated environments and immersive technologies in STEM education and workforce training, it is becoming increasingly important to study and understand how learners’ interactions and navigation in virtual environments affect their learning and skill development. In this paper, we quantify and assess the effect of learners’ navigation in an immersive simulated environment on learning outcomes, where navigation is characterized by the total time spent in the simulation and time allocations to different areas within the virtual environment. We implement a set of immersive simulation-based learning (ISBL) modules in an undergraduate computer science course with eighteen students and record their screen as they navigate in the simulation environment to perform the tasks needed to complete the ISBL assignments. We use a video analytics tool to process and analyze the videos and collect statistics related to a set of navigation-related measures for each student. We also use surveys to collect data on students’ demographics, prior knowledge and experience, personality, experiential learning, and self-assessment of learning. We then perform a set of multivariable regression analyses to characterize and explain the relationship between navigation measures and constructs assessed via survey instruments to determine how/if users’ navigation in the simulated environment can be a predictor of their learning outcomes. The results indicate that the total time spent in the simulation and the distribution of time allocations among different areas within the simulated environment are predictors of experiential learning and students’ self-assessment of learning. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2000599
- PAR ID:
- 10527670
- Publisher / Repository:
- TEMPUS Publications
- Date Published:
- Journal Name:
- International journal of engineering education
- Volume:
- 40
- Issue:
- 4
- ISSN:
- 0949-149X
- Page Range / eLocation ID:
- 873-887
- Subject(s) / Keyword(s):
- simulation-based learning immersive technologies human-computer interaction video analytics
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            This paper presents a study on the impact of class delivery mode (remote vs. in-person) on students’ learning experience when Immersive Simulation-Based Learning (ISBL) modules are used as course assignments. ISBL involves problem-based learning via a 3-dimensional (3D) simulated environment that mimics real-life applications such as manufacturing and healthcare systems, airports, and other service systems. Within the simulated environment, students can observe the corresponding system, collect data, understand relationships between the system components, make changes to the model and observe the impact of those changes, and learn by doing. ISBL is advantageous when access to real-world facilities is difficult or impossible due to geographical barriers or safety concerns as well as in remote and online learning due to geographically dispersed students. This study compares two groups of students. Both groups are taught by the same instructor and use the same course material, including the ISBL modules. The only difference between the two groups is the course delivery mode, where one group is taught remotely through synchronous online sessions, and the other is taught in person in a traditional classroom setting. We collect data on demographics, prior preparation, motivation, experiential learning, usability scale, and self-assessment of learning objectives based on Bloom’s taxonomy. We then perform statistical comparisons to investigate the impact of delivery mode when ISBL modules are used. We use the comparison results to test the hypothesis that ISBL modules will help maintain remote students’ motivation and learning outcomes compared to in-person students. The results show no statistically significant difference between the two groups on any measure, suggesting that ISBL is equally effective in the two delivery modes.more » « less
- 
            In educational research, user-simulation interaction is gaining importance as it provides key insights into the effectiveness of simulation-based learning and immersive technologies. A common approach to study user-simulation interaction involves manually analyzing participant interaction in real-time or via video recordings, which is a tedious process. Surveys/questionnaires are also commonly used but are open to subjectivity and only provide qualitative data. The tool proposed in this paper, which we call Environmental Detection for User-Simulation Interaction Measurement (EDUSIM), is a publicly available video analytics tool that receives screen-recorded video input from participants interacting with a simulated environment and outputs statistical data related to time spent in pre-defined areas of interest within the simulation model. The proposed tool utilizes machine learning, namely multi-classification Convolutional Neural Networks, to provide an efficient, automated process for extracting such navigation data. EDUSIM also implements a binary classification model to flag imperfect input video data such as video frames that are outside the specified simulation environment. To assess the efficacy of the tool, we implement a set of immersive simulation-based learning (ISBL) modules in an undergraduate database course, where learners record their screens as they interact with a simulation to complete their ISBL assignments. We then use the EDUSIM tool to analyze the videos collected and compare the tool’s outputs with the expected results obtained by manually analyzing the videos.more » « less
- 
            Researchers have looked into ways to make computer science assignments more engaging, practical, and beneficial to students to improve learning outcomes by increasing student appeal. Offering a pool of assignments and allowing students to choose their preferred assignments is considered as a potential method for improving learning outcomes. In this paper, we investigate the effect of context choice for assignments in an object-oriented programming course that covers various topics such as object-oriented programming concepts, database design and implementation, graphical user interface design, and web application development. Students complete three immersive simulation-based learning (ISBL) modules as course assignments. ISBL modules involve technology-enhanced problem-based learning where the problem context is represented via a three-dimensional (3D), animated discrete-event simulation model that resembles a real-world system or context, in this case, we have three simulated systems/contexts around which ISBL assignments are defined: an airport, a manufacturing system, and a hospital emergency department. The research experiments involve four groups: (1) students with no choice who use the same assigned simulated system for all three ISBL assignments; (2) students with no choice who are given a different simulated system for each ISBL assignment; (3) students who can choose their preferred simulated system at the beginning but cannot change their choice for future assignments; and, (4) students who can choose at the beginning and switch between the three simulated systems for subsequent assignments. Data are collected over multiple semesters and statistical analyses are conducted to compare the four groups in terms of motivation, experiential learning, and self assessment of learning. We also conduct qualitative assessments in the form of interviews to support and explain our statistical results.more » « less
- 
            Besides its use as a powerful systems analysis tool, simulation has also been used for decades in educational settings as a teaching and learning method. Simulation can replace or augment real-world inquiry-based experiences by providing learners with a low-cost and risk-free experimentation platform to develop knowledge and skills in a simulated environment. This paper presents an overview of current applications and the ongoing transition from physical experimentation to digital simulations and immersive simulated learning environments in engineering education. The paper highlights major implementation and research gaps related to simulation-based learning and immersive simulated learning environments, namely, lack of integration with learning theories and limited formal assessments of effectiveness. Potential implementation approaches and important areas for future educational research are discussed and exemplified in response to the identified gaps. The discussions presented are intended for simulationists, educational researchers, and instructors who are interested in designing and/or utilizing engineering education interventions involving simulated learning environments and immersive technologies in their teaching and educational research. In particular, the Immersive Simulation-Based Learning (ISBL) approach discussed in the paper provides a framework for simulationists to reuse the models developed as part of their simulation projects for educational purposes.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    