Abstract High‐precision dating of the metamorphic sole of ophiolites can provide insight into the tectonic evolution of ophiolites and subduction zone processes. To understand subduction initiation beneath a young, well‐preserved and well‐characterized ophiolite, we performed coupled zircon laser‐ablation inductively coupled mass spectrometry trace element analyses and high‐precision isotope dilution‐thermal ionization mass spectrometry U–Pb dating on 25 samples from the metamorphic sole of the Samail ophiolite (Oman‐United Arab Emirates). Zircon grains from amphibolite‐ to granulite‐facies (0.8–1.3 GPa, ~700–900°C), garnet‐ and clinopyroxene‐bearing amphibolite samples (n = 18) show systematic trends of decreasing heavy rare earth element slope (HREE; Yb/Dy) with decreasing Yb concentration, reflecting progressive depletion of the HREE during prograde garnet growth. For half of the garnet‐clinopyroxene amphibolite samples, Ti‐in‐zircon temperatures increase, and U–Pb dates young with decreasing HREE slope, consistent with coupled zircon and garnet growth during prograde metamorphism. In the remaining samples, there is no apparent variation in Ti‐in‐zircon temperature with decreasing HREE slope, and the combined U–Pb and geochemical data suggest zircon crystallization along either the prograde to peak or prograde to initial retrograde portions of the metamorphicP–T–tpath. The new data bracket the timing of prograde garnet and zircon growth in the highest grade rocks of the metamorphic sole between 96.698 ± 0.094 and 95.161 ± 0.064 Ma, in contrast with previously published geochronology suggesting prograde metamorphism at ~104 Ma. Garnet‐free amphibolites and leucocratic pods from lower grade (but still upper amphibolite facies) portions of the sole are uniformly HREE enriched (Yb/Dy > 5) and are ~0.5–1.3 Myr younger than the higher grade rocks from the same localities, constraining the temporal offset between the metamorphism and juxtaposition of the higher and lower grade units. Positive zircon εHf(+6.5 to +14.6) for all but one of the dated amphibolites are consistent with an oceanic basalt protolith for the sole. Our new data indicate that prograde sole metamorphism (96.7–95.2 Ma) immediately predated and overlapped growth of the overlying ophiolite crust (96.1–95.2 Ma). The ~600 ky offset between the onset of sole metamorphism in the northern portion of the ophiolite versus the start of ophiolite magmatism is an order of magnitude shorter than previously proposed (~8 Ma) and is consistent with either spontaneous subduction initiation or an abbreviated period of initial thrusting during induced subduction initiation. Taken together, the sole and ophiolite crust preserve a record of the first ~1.5 Myr of subduction. A gradient in the initiation of high‐grade metamorphism from the northwest (96.7 Ma) to southeast (96.0–95.7 Ma) may record propagation of the nascent subduction zone and/or variations in subduction rate along the length of the ophiolite.
more »
« less
Thinning and Heating of Laramide Continental Lower Crust Recorded by Zircon Petrochronology
Abstract Zircon grains from the metasedimentary lower crust of the Rio Grande Rift, New Mexico, preserve a metamorphic record of the transition from Laramide compression to Eocene extension. Zircon U‐Pb isotopes and trace‐element concentrations from five two‐pyroxene metaigneous granulite xenoliths define discrete populations: older zircon cores (∼15–50 Ma) that are depleted in heavy rare‐earth elements (HREE) but Ti‐rich, and younger zircon rims (∼3–15 Ma) with elevated HREE and lower Ti concentrations. Coupled phase equilibria and garnet‐melt‐zircon trace‐element partitioning calculations show that the older zircon cores equilibrated in thick (>40 km), hot (800–900°C), garnet‐bearing lower crust during the cessation of compression at the end of the Laramide orogeny. Zircon rim domains equilibrated at lower pressures, consistent with >9 km of thinning of the lower crust. Thermal‐kinematic calculations show that these pressure‐temperature‐time constraints require thinning of the lithospheric mantle prior to and during regional Cenozoic extension. Convective erosion of the mantle lithosphere over tens of millions of years, possibly facilitated by dynamics of the Farallon slab, provides a mechanism to facilitate lower crustal heating and extension.
more »
« less
- Award ID(s):
- 2025122
- PAR ID:
- 10527814
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Geochemistry, Geophysics, Geosystems
- Volume:
- 25
- Issue:
- 7
- ISSN:
- 1525-2027
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Ultrahigh‐temperature (UHT; >900°C) metamorphism drives crustal differentiation and is widely recognized in the rock record, but its geodynamic causes are debated. Previous work on granulite‐facies metapelite xenoliths from San Luis Potosí, Mexico suggests the lower crust experienced a protracted UHT metamorphic event that coincided with the onset of regional extension. To determine the duration, conditions, and heat sources of UHT metamorphism recorded by these xenoliths, this study characterizes the major‐element, trace‐element, and U‐Pb isotopic systematics of quartz, rutile, feldspar, garnet, and zircon by in situ electron microprobe (EPMA) and laser‐ablation inductively coupled‐plasma mass spectrometry (LA‐ICP‐MS), and augments these data with detailed petrography, thermobarometry, phase equilibria modeling, and diffusion modeling. Thermobarometry and phase equilibria modeling suggest peak metamorphic conditions exceeded 0.7 GPa and 900°C. Zircon petrochronology confirms >15 Myr of UHT conditions since its onset at ∼30 Ma. A small population of zircon record elevated temperatures following transition from backarc compression to extension during the waning stages of orogenesis (60–37 Ma). Garnet preserves trace‐element zoning and mineral inclusions consistent with suprasolidus garnet growth and subsequent compositional modification by intracrystalline rare‐earth element diffusion during protracted heating, with diffusion chronometry timescales in agreement with zircon data, followed by fluid‐driven remobilization of trace elements along now‐healed fractures within ∼1 Myr of eruption. In sum, these data are most compatible with lithospheric mantle attenuation or removal as the dominant heat transport mechanism driving synextensional UHT metamorphism and crustal melting, which has bearing on models for crustal differentiation and formation of modern and ancient granulite terranes globally.more » « less
-
Zircon xenocrysts from alkali basalts in Ratanakiri Province, Cambodia represent a unique low-Hf zircon within a 12,000 km long Indo-Pacific megacryst zone. Colorless, yellow, brown, and red crystals ({100}, {101}, subordinate {211}, {1103}), with hopper growth and corrosion features range up to 20 cm in size. Zircon chemistry indicates juvenile, Zr-saturated, mantle-derived alkaline melt (Hf 0.6–0.7 wt %, Y <0.2 wt %, U + Th + REE (Rare-Earth Elements) < 600 ppm, Zr/Hf 66–92, Eu/Eu*N ~1, positive Ce/Ce*N, HREE (Heavy REE) enrichment). Incompatible element depletion with increasing Yb/SmN from core to rim at ~ constant Hf suggests single stage growth. Ti-in-zircon temperatures (~570–740 °C) are lower than predicted by crystal morphology (800–900 °C) and decrease from core to rim (ΔT = 10–50 °C). The δ18O values (4.88 to 5.01‰ VSMOW (Vienna Standard Mean Ocean Water)) are relatively low for xenocrysts from the zircon Indo-Pacific zone (ZIP). The 176Hf/177Hf values (+ εHf 4.5–10.2) give TDepleted Mantle model source ages of 260–462 Ma and TCrustal ages of 391–754 Ma. The source magmas reflect variably depleted lithospheric mantle with little supracrustal input. Zircon U-Pb (0.88–1.56 Ma) and (U-Th)/He (0.86–1.02 Ma) ages are older than host basalt ages (~0.7 Ma), which suggests limited residence before transport. Zircon genesis suggests Zr-saturated, Al-undersaturated, carbonatitic-influenced, low-degree partial melting (<1%) of peridotitic mantle at ~60 km beneath the Indochina terrane.more » « less
-
Abstract Lower crustal xenoliths from the Missouri Breaks diatremes and Bearpaw Mountains volcanic field in Montana record a multi-billion-year geologic history lasting from the Neoarchean to the Cenozoic. Unusual kyanite-scapolite-bearing mafic granulites equilibrated at approximately 1.8 GPa and 890 °C and 2.3 GPa and 1000 °C (67 and 85 km depth) and have compositions pointing to their origin as arc cumulates, while metapelitic granulites record peak conditions of 1.3 GPa and 775 °C (48 km depth). Rutile from both mafic granulites and metapelites have U-Pb dates that document the eruption of the host rocks at ca. 46 Ma (Big Slide in the Missouri Breaks) and ca. 51 Ma (Robinson Ranch in the Bearpaw Mountains). Detrital igneous zircon in metapelites date back to the Archean, and metamorphic zircon and monazite record a major event beginning at 1800 Ma. Both zircon and monazite from a metapelite from Robinson Ranch also document an earlier metamorphic event at 2200–2000 Ma, likely related to burial/metamorphism in a rift setting. Metapelites from Big Slide show a clear transition from detrital igneous zircon accumulation to metamorphic zircon and monazite growth around 1800 Ma, recording arc magmatism and subsequent continent-continent collision during the Great Falls orogeny, supporting suggestions that the Great Falls tectonic zone is a suture between the Wyoming craton and Medicine Hat block. U-Th-Pb and trace-element depth profiles of zircon and monazite record metasomatism of the lower crust during the Laramide orogeny at ~60 Ma, bolstering recent research pointing to Farallon slab fluid infiltration during the orogeny.more » « less
-
Abstract Metasediments are common constituents of exhumed lower‐to‐mid‐crustal granulite terranes; understanding their emplacement is significant for the assembly and tectonic evolution of deep continental crust. Here, we report a monazite U‐Th‐Pb petrochronological investigation of the Variscan Ivrea‐Verbano Zone (IVZ) (Val Strona di Omegna section)—an archetypal section of lower crust. Monazite Th‐Pb dates from 11 metapelitic samples decrease with structural depth from 310 to 285 Ma for amphibolite‐facies samples to <290 Ma for granulite‐facies samples. These dates exhibit a time‐resolved variation in monazite trace‐element composition, dominated by the effects of plagioclase and garnet partitioning. Monazite growth under prograde to peak metamorphic conditions began as early as 316 ± 2 Ma. Amphibolite‐facies monazite defines a trend consistent with progressively decreasing garnet modal abundances during decompression and cooling starting at ∼310 Ma; the timing of the onset of exhumation decreases to ∼290 Ma at the base of the amphibolite‐facies portion of the section. Structurally lower, granulite‐facies monazite equilibrated under garnet‐present pressure‐temperature conditions at <290 Ma, with monazite (re)crystallization persisting until at least ∼260 Ma. Combined with existing detrital zircon U‐Pb dates, the monazite data define a <30 Myr duration between deposition of clastic sediments and their burial and heating, potentially to peak amphibolite‐to‐granulite‐facies conditions. Similarly brief timescales for deposition, burial and prograde metamorphism of lower crustal sediments have been reported from continental magmatic arc terranes—supporting the interpretation that the IVZ represents sediments accreted to the base of a Variscan arc magmatic system >5 Myr prior to the onset of regional extension and mafic magmatism.more » « less
An official website of the United States government
