skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Reconstructed Late Summer Maximum Temperatures for the Southeastern United States From Tree‐Ring Blue Intensity
Abstract Over recent decades, the southeastern United States (Southeast) has become increasingly well represented by the terrestrial climate proxy record. However, while the paleo proxy records capture the region's hydroclimatic history over the last several centuries, the understanding of near surface air temperature variability is confined to the comparatively shorter observational period (1895‐present). Here, we detail the application of blue intensity (BI) methods on a network of tree‐ring collections and examine their utility for producing robust paleotemperature estimates. Results indicate that maximum latewood BI (LWBI) chronologies exhibit positive and temporally stable correlations (r = 0.28–0.54,p < 0.01) with summer maximum temperatures. As such, we use a network of LWBI chronologies to reconstruct August‐September average maximum temperatures for the Southeast spanning the period 1760–2010 CE. Our work demonstrates the utility of applying novel dendrochronological techniques to improve the understanding of the multi‐centennial temperature history of the Southeast.  more » « less
Award ID(s):
2102938 2102888 2002524 2002482 2002494
PAR ID:
10528120
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
AGU
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
51
Issue:
13
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This is the first study to generate and analyze the climate signal in blue intensity (BI) tree-ring chronologies from Alaska yellow-cedar (Callitropsis nootkatensis (D. Don) Oerst. ex D.P. Little). The latewood BI chronology shows a much stronger temperature sensitivity than ring width and can thus provide information on past climate. The well-replicated BI chronology exhibits a positive January–August mean maximum temperature signal for 1900–1975, after which it loses temperature sensitivity following the 1976–1977 shift in northeastern Pacific climate. The positive temperature response appears to recover and remains strong for the most recent decades, but the coming years will continue to test this observation. This temporary loss of temperature sensitivity from about 1976 to 1999 is not evident in ring width or in a change in forest health but is consistent with prior work linking cedar decline to warming. A confounding factor is the uncertain influence of a shift in color variation from the heartwood–sapwood boundary. Future expansion of the yellow-cedar BI network and further investigation of the influence of the heartwood–sapwood transitions in the BI signal will lead to a better understanding of the utility of this species as a climate proxy. 
    more » « less
  2. Abstract Contextualizing current increases in Northern Hemisphere temperatures is precluded by the short instrumental record of the pastca.120 years and the dearth of temperature-sensitive proxy records, particularly at lower latitudes south of <50 °N. We develop a network of 29 blue intensity chronologies derived from tree rings ofTsuga canadensis(L.) Carrière andPicea rubensSarg. trees distributed across the Mid-Atlantic and Northeast USA (MANE)—a region underrepresented by multi-centennial temperature records. We use this network to reconstruct mean March-September air temperatures back to 1461 CE based on a model that explains 62% of the instrumental temperature variance from 1901−1976 CE. Since 1998 CE, MANE summer temperatures are consistently the warmest within the context of the past 561 years exceeding the 1951−1980 mean of +1.3 °C. Cool summers across MANE were frequently volcanically forced, with significant (p<0.05) temperature departures associated with 80% of the largest tropical (n=13) and extratropical (n=15) eruptions since 1461 CE. Yet, we find that more of the identified cool events in the record were likely unforced by volcanism and either related to stochastic variability or atmospheric circulation via significant associations (p<0.05) to regional, coastal sea-surface temperatures, 500-hpa geopotential height, and 300-hpa meridional and zonal wind vectors. Expanding the MANE network to the west and south and combining it with existing temperature-sensitive proxies across North America is an important next step toward producing a gridded temperature reconstruction field for North America. 
    more » « less
  3. Abstract Southwestern North America has experienced significant temperature increases over the last century, leading to intensified droughts that significantly affect montane forests. Although tree‐ring data have provided long‐term context for this recent drought severity, the varying physiological responses of trees to climate variability make it challenging to disentangle the combined influence of temperature and soil moisture. Here we investigate complex climate‐growth relationships in Rocky Mountain bristlecone pine (Pinus aristata) at a low‐elevation and a high‐elevation site using quantitative wood anatomy (QWA). Significant correlations with climate were found for low‐elevation tree‐ring width (TRW) and earlywood chronologies, including positive correlations with spring and early summer precipitation and drought indices and negative correlations with spring and early summer maximum temperatures. At high elevations, TRW and earlywood chronologies show positive responses to summer moisture, whereas latewood chronologies correlate positively with August and September maximum temperatures and negatively with August precipitation. We leverage this differing seasonality of moisture and temperature signals and compare the QWA data to known droughts. The earlywood lumen area is found to be highly responsive to drought because of its physiological reliance on water availability for maintaining turgor pressure during cell enlargement. We also observed a decline in temperature sensitivity at the high elevation site, suggesting shifts in the dominance of limiting factors. Integrating QWA with traditional dendrochronology improves interpretations of tree‐ring data for use in climate reconstruction, offering detailed insights into tree physiological responses and the mix of environmental and developmental controls on cell growth. 
    more » « less
  4. Abstract Developing sustainable urban systems is a fundamental societal challenge for the 21st century, and central Texas faces particularly synergistic challenges of a rapidly growing urban population and a projected increasingly drought-prone climate. To assess the history of urbanization impacts on watersheds here, we analyzed 51 cores from bald cypress trees in paired urban and rural watersheds in Austin, Texas. We find a significant contrast between rural and urbanized watersheds. In the rural watershed, tree-ring-width growth histories (“chronologies”) from 1844–2018 significantly and positively correlate (p < 0.01) with (1) one another, and (2) regional instrumental and proxy records of drought. In the urbanized watershed, by contrast, chronologies weakly correlate with one another, with instrumental records of drought, and with the rural chronologies and regional records. Relatively weak drought limitations to urban tree growth are consistent with the significant present-day transfer of municipal water from urban infrastructure by leakage and irrigation to the natural hydrologic system. We infer a significant, long-term contribution from infrastructure to baseflow in urbanized watersheds. In contrast to the common negative impacts of ‘urban stream syndrome’, such sustained baseflow in watersheds with impaired or failing infrastructure may be an unintended positive consequence for stream ecosystems, as a mitigation against projected extended 21st-century droughts. Additionally, riparian trees may serve as a proxy for past impacts of urbanization on natural streams, which may inform sustainable urban development. 
    more » « less
  5. Abstract The maximum intrinsic rate of population increase (rmax) represents a population's maximum capacity to replace itself and is central to fisheries management and conservation. Species with lowerrmaxtypically have slower life histories compared to species with faster life histories and higherrmax. Here, we posit that metabolic rate is related to the fast–slow life history continuum and the connection may be stronger for maximum metabolic rate and aerobic scope compared to resting metabolic rate. Specifically, we ask whether variation inrmaxor any of its component life‐history traits – age‐at‐maturity, maximum age, and annual reproductive output – explain variation in resting and maximum metabolic rates and aerobic scope across 84 shark and teleost species, while accounting for the effects of measurement temperature, measurement body mass, ecological lifestyle, and evolutionary history. Overall, we find a strong connection between metabolic rate and the fast‐slow life history continuum, such that species with faster population growth (higherrmax) generally have higher maximum metabolic rates and broader aerobic scopes. Specifically,rmaxis more important in explaining variation in maximum metabolic rate and aerobic scope compared to resting metabolic rate, which is best explained by age‐at‐maturity (out of the life history traits examined). In conclusion, teleosts and sharks share a common fast–slow physiology/life history continuum, with teleosts generally at the faster end and sharks at the slower end, yet with considerable overlap. Our work improves our understanding of the diversity of fish life histories and may ultimately improve our understanding of intrinsic sensitivity to overfishing. 
    more » « less