skip to main content


This content will become publicly available on June 13, 2025

Title: Connecting affordances of physical and virtual laboratory modes to engineering epistemic practices
Laboratory activities are central to undergraduate student learning in science and engineering. With advancements in computer technology, many laboratory activities have shifted from providing students experiments in a physical mode to providing them in a virtual mode. Further, physical and virtual modes can be combined to address a single topic, as the modes have complementary affordances. In this paper, we report on the design and implementation of a physical and virtual laboratory on the topic of jar testing, a common process for drinking water treatment. The assignment for each laboratory mode was designed to leverage the mode’s affordances. Correspondingly, we hypothesized each would elicit a different subset of engineering epistemic practices. In a naturalistic, qualitative study design based on laboratory mode (physical or virtual) and laboratory order (virtual first or physical first), we collected process, product, and reflection data of students’ laboratory activity. Taking an orientation that learning is participation in valued disciplinary practice, data were coded and used to characterize how students engaged with each laboratory mode. Results showed that the virtual laboratory elicited more conceptual epistemic practices and the physical laboratory more material epistemic practices, aligning with the affordances of each mode. When students completed the laboratory in the virtual mode first, students demonstrated greater engagement in epistemic practices and more positive perceptions of their learning experience in the virtual mode than when they completed the physical mode first. In contrast, engagement in the physical mode was mostly unaffected by the laboratory order.  more » « less
Award ID(s):
2204885 2204933
PAR ID:
10528130
Author(s) / Creator(s):
; ;
Publisher / Repository:
Springer
Date Published:
Journal Name:
Journal of Computing in Higher Education
ISSN:
1042-1726
Subject(s) / Keyword(s):
Affordances · Engineering epistemic practices · Environmental engineering · Instructional design · Physical laboratory · Virtual laboratory
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We use qualitative methods to investigate students’ engagement in an upper-division laboratory. Laboratory activities are recognized as key curricular elements in engineering education. These activities have traditionally been delivered in person, but new laboratory modalities (such as virtual laboratories) have been gaining popularity, boosted by the COVID-19 pandemic. Understanding how laboratory modality influences student learning is important to be able to design and implement effective laboratories. While some educators have investigated if virtual laboratories can replace their analogous physical laboratory counterparts, others have looked at using virtual laboratories in combination with physical laboratories. Taking this latter approach, they argue the two modes have different affordances and therefore could be complementary - meaning that each mode may lend itself to more effectively engaging students in certain productive practices. We have previously reported on the development of two environmental engineering laboratories, one physical and one virtual. Both laboratories address the topic of jar testing, an important process in drinking water treatment, with the design of each mode being based on that mode's affordances. These laboratories were implemented in an upper-level chemical engineering course. Twelve students split into four groups consented to be audio and video recorded during their time in the laboratory and have the work they turn in collected, with most also volunteering to be interviewed about their experiences. A first pass of this data has been completed in which we viewed learning from the lens of participation in disciplinary practice. We applied the theory of engineering epistemic practices, which are the socially organized and interactionally accomplished ways engineers develop, justify, and communicate ideas when completing engineering work. Transcripts of the laboratory observations were coded to identify students’ engagement with specific epistemic practices, which were categorized as either conceptual, material, or social. These codes were then counted and cross-validated with interview responses to draw conclusions about how student's engagement differed in each mode. This prior research has indicated that students engage with each design using different epistemic practices. While the first pass analysis showed differences in counts of epistemic practices between modes, it provided limited insight into how and why the epistemic practices are elicited and coordinated among students. In this paper, we extend the discourse analysis by illustrating our developing methodology for a second pass analysis of the video recordings. We seek to develop a thick description by identifying how particular epistemic practices fit together temporally and serve to promote or hinder students’ progress. Engagement in epistemic practices does not happen in a vacuum and instead happens contextually, influenced by students' previous engagement and the laboratory environment and their social and academic history. This analysis allows a deeper understanding of how students engage in engineering practice while completing laboratories, knowledge that can be applied to enhance engineering physical and virtual laboratory instruction and design. Additionally, this work contributes to the methodological conversation of ways to use interaction analyses to extract understanding from a rich set of qualitative data. 
    more » « less
  2. Professional engineering demands more than the ability to proficiently carry out engineering calculations. Engineers need to approach problems with a holistic view, make decisions based on evidence, collaborate effectively in teams, and learn from setbacks. Laboratory work plays a crucial role in shaping the professional development of university engineering students, as it enables them to cultivate these essential practices. A successful laboratory task design should provide students opportunities to develop these practices but also needs to adhere to the constraints of the educational environment. In this project, we explore how both virtual (simulation-based) and physical (hands-on) laboratories, based on the same real-world engineering process, prepare students for their future careers. Specifically, we seek to determine whether the virtual and physical laboratory modes foster different yet complementary epistemic practices. Epistemic practices refer to the ways in which group members propose, communicate, justify, assess, and validate knowledge claims in a socially organized and interactionally accomplished manner. To accomplish these objectives, we are conducting a microgenetic analysis of student teams engaging in both the virtual and physical versions of the same laboratory exercise, the Jar Test for Drinking Water Treatment. Jar testing is a standard laboratory procedure used by design engineers and water treatment plant operators to optimize the physical and chemical conditions for the effective removal of particulate contaminants from water through coagulation, flocculation, and settling. The central hypothesis guiding this research is that physical laboratories emphasize social and material epistemic practices, while virtual laboratories highlight social and conceptual epistemic practices. The goal is to gain transferable knowledge about how the laboratory format and instructional design influence students' engagement in epistemic practices. To date we have developed physical and virtual versions of the Jar Test laboratory, each built around the affordances of their respective modes. We have completed two rounds of data collection resulting in data from 21 students (7 groups of 3). The primary data sources have included video recordings and researcher observations of the teams during the laboratory work, semi-structured stimulated recall interviews with students and laboratory instructors, and student work products. Using discourse analysis methods within a sociocultural framework, we are addressing the following research questions: 1. In what ways and to what extent does conducting an experiment in a physical mode to develop a process recommendation influence students’ engineering epistemic practices? 2. In what ways and to what extent does conducting an experiment in a virtual mode to develop a process recommendation influence students’ engineering epistemic practices? 3. How do students in each laboratory mode respond to being “stuck”? Do students’ views on the iterative nature of science/engineering and their tolerance for mistakes depend on the instructional design afforded by the laboratory mode? While this study focuses on a process specific to environmental engineering, its findings have the potential to positively impact teaching and learning practices across all engineering and science disciplines that rely on laboratory investigations in their curriculum. 
    more » « less
  3. To support teachers in providing all students with opportunities to engage in engineering learning activities, research must examine the ways that elementary teachers support how diverse learners engage with engineering ideas and practices. This study focuses on two teachers' verbal supports in classroom discussions across two class sections of a four-week, NGSS-aligned unit that challenged students to redesign their school to reduce water runoff. We examine the research question: How and to what extent do upper-elementary teachers verbally support students' engagement with engineering practices across diverse classroom contexts in an NGSS-aligned integrated science unit? Classroom audio data was collected daily and coded to analyze support through different purposes of teacher talk. Results reveal the purpose of teachers’ talk often varied between the class sections depending on the instructional activity and indicate that teachers utilized a variety of supports toward students' engagement in different engineering practices. In one class, with a large percentage of students with individualized educational plans, teachers provided more epistemic talk about the engineering practices to contextualize the particular activities. For the other class, with a large percentage of students in advanced mathematics, teachers provided more opportunities for students to engage in discussion and support for students to do engineering. This difference in supports may decrease the opportunities for some students to rigorously engage in engineering ideas and practices. This study can inform future research on the kinds of educative supports needed to guide teaching of integrated engineering activities for diverse students. 
    more » « less
  4. null (Ed.)
    We worked with local K–6 teachers to develop lesson plans that would connect a 50-minute engineering design challenge, completed during a field trip, to the students’ classroom learning. The result was a model for designing pre-visit classroom activities that develop students’ familiarity with phenomena, tools, and processes that will be used during the field trip and post-visit classroom activities that provide students with opportunities to reflect on some of their field trip experiences. While the field trip activity alone is an exciting and productive learning opportunity, students who complete the full set of classroom and field trip activities participate in a richer experience that engages them in more of the practices of science and engineering and more fully develops the disciplinary core ideas related to engineering and physical science. Each Engineering Exploration module includes four activities: an engineering design activity completed during a field trip to an interactive science museum, accompanied by two preactivities and one post activity done in students’ classroom and facilitated by their elementary school teacher. While each classroom activity was designed to take no more than 50 minutes, many teachers found it valuable to extend each lesson to allow for deeper discussion and engagement with the activities. The classroom experiences presented here are associated with a field trip program in which students iteratively design a craft out of paper and tape that will hover above a “fire” (upward moving column of air) while carrying a “sensor” (washer). The classroom activities surrounding this field trip help students develop conceptual understandings of forces to navigate the engineering design challenge. 
    more » « less
  5. In introductory physics laboratory instruction, students often expect to confirm or demonstrate textbook physics concepts. This expectation is largely undesirable: labs that emphasize confirmation of textbook physics concepts are generally unsuccessful at teaching those concepts and even in contexts that do not emphasize confirmation, such expectations can lead to students disregarding or manipulating their data in order to obtain the expected result. In other words, when students expect their lab activities to confirm a known result, they may relinquish epistemic agency and violate disciplinary practices. We present a contrasting case where, we claim, confirmatory expectations can actually support productive disciplinary engagement. In this case study, we analyze the complex dynamics of students’ epistemological framing in a lab where students’ confirmatory expectations support and even generate epistemic agency and disciplinary practices, including developing original ideas, measures, and apparatuses to apply to the material world.

    <supplementary-material><permissions><copyright-statement>Published by the American Physical Society</copyright-statement><copyright-year>2024</copyright-year></permissions></supplementary-material></sec> </div> <a href='#' class='show open-abstract' style='margin-left:10px;'>more »</a> <a href='#' class='hide close-abstract' style='margin-left:10px;'>« less</a> </div><div class="clearfix"></div> </div> </li> </ol> <div class="push_top"></div> </div> </div> <div class="col-md-3"> <div id="citation-sidebar"> <ul class="nav nav-list" id="citation-fulltext-sidebar" style="font-size: 14px; font-family: Georgia Regular;"> <li style="font-weight: bold; margin-bottom: 5px; font-size:13px;">Free Publicly Accessible Full Text</li> <li class="small"> This content will become publicly available on June 13, 2025</li> <li class="divider"></li> <li style="font-weight: bold;font-size:13px;">Journal Article:</li> <li style="word-break:break-all" class="small"> <a href="https://doi.org/10.1007/s12528-024-09403-7" target="_blank" rel="noopener noreferrer" title="Document DOI URL" class="external-link" data-ostiid="10528130" style="word-wrap: break-word;">https://doi.org/10.1007/s12528-024-09403-7  <span class="fas fa-external-link-alt"></span></a></li> </ul> <div class="hidden-print"> <ul class="nav nav-list clearfix" id="sidebar-feedback" style="margin-top: 20px; margin-bottom: 20px; clear: both;"> <li style="position: relative;"> <div class="feedback-container"> <div style="font-family: Georgia Regular; font-size: 14px; color: #313b52; padding:20px;"> Have feedback or suggestions for a way to improve these results?<br/> <span style="text-decoration: underline;"> <script type="text/javascript" defer>/* <![CDATA[ */ user = "feedback"; site = "research.gov"; subject = "?subject=Comments or Suggestions"; content = "<span class='fa fa-envelope'></span><span class='span-link' style='padding-left:5px'>Let us know</span>"; id = ""; document.write('<a itemprop="'+ id +'" href="mailto:' + user + '@' + site + subject + '">' + (content != '' ? content : (user + '@' + site)) + '</a>'); /* ]]> */</script> <noscript></noscript>!</span> </div> </li> </ul> <ul class="nav nav-list" style="font-size: 14px; font-family: Arial Regular;"> <li class="nav-header header-format">Citation Formats</li> <li class="links-format"><a href="#cite-mla" data-toggle="modal">MLA</a> <div id="cite-mla" class="modal" tabindex="-1" role="dialog" aria-labelledby="cite-mla_label" aria-hidden="true"> <div class="modal-dialog"> <div class="modal-content"> <div class="modal-header"> <button type="button" class="close" data-dismiss="modal" aria-hidden="true">×</button> <strong id="cite-mla_label">Cite: MLA Format</strong> </div> <div class="modal-body" >Gavitte, Samuel B, Koretsky, Milo D, and Nason, Jeffrey A. <em>Connecting affordances of physical and virtual laboratory modes to engineering epistemic practices</em>. Retrieved from https://par.nsf.gov/biblio/10528130. <em>Journal of Computing in Higher Education</em> . Web. doi:10.1007/s12528-024-09403-7. </div> <div class="modal-footer"> <button class="btn btn-sm btn-default" data-dismiss="modal" aria-hidden="true">Close</button> </div> </div> </div> </div></li> <li class="links-format"><a href="#cite-apa" data-toggle="modal">APA</a> <div id="cite-apa" class="modal" tabindex="-1" role="dialog" aria-labelledby="cite-apa_label" aria-hidden="true"> <div class="modal-dialog"> <div class="modal-content"> <div class="modal-header"> <button type="button" class="close" data-dismiss="modal" aria-hidden="true">×</button> <strong id="cite-apa_label">Cite: APA Format</strong> </div> <div class="modal-body">Gavitte, Samuel B, Koretsky, Milo D, & Nason, Jeffrey A. <em>Connecting affordances of physical and virtual laboratory modes to engineering epistemic practices</em>. <em>Journal of Computing in Higher Education</em>, <em></em> (). Retrieved from https://par.nsf.gov/biblio/10528130. <a href="https://doi.org/10.1007/s12528-024-09403-7">https://doi.org/10.1007/s12528-024-09403-7</a> </div> <div class="modal-footer"> <button class="btn btn-sm btn-default" data-dismiss="modal" aria-hidden="true">Close</button> </div> </div> </div> </div></li> <li class="links-format"><a href="#cite-chi" data-toggle="modal">Chicago</a> <div id="cite-chi" class="modal" tabindex="-1" role="dialog" aria-labelledby="cite-chi_label" aria-hidden="true"> <div class="modal-dialog"> <div class="modal-content"> <div class="modal-header"> <button type="button" class="close" data-dismiss="modal" aria-hidden="true">×</button> <strong id="cite-chi_label">Cite: Chicago Format</strong> </div> <div class="modal-body">Gavitte, Samuel B, Koretsky, Milo D, and Nason, Jeffrey A. "Connecting affordances of physical and virtual laboratory modes to engineering epistemic practices". <em>Journal of Computing in Higher Education</em> (). Country unknown/Code not available: Springer. <a href="https://doi.org/10.1007/s12528-024-09403-7">https://doi.org/10.1007/s12528-024-09403-7.</a> <a href="https://par.nsf.gov/biblio/10528130">https://par.nsf.gov/biblio/10528130</a>. </div> <div class="modal-footer"> <button class="btn btn-sm btn-default" data-dismiss="modal" aria-hidden="true">Close</button> </div> </div> </div> </div></li> <li class="links-format"><a href="#cite-bib" data-toggle="modal">BibTeX</a> <div id="cite-bib" class="modal" tabindex="-1" role="dialog" aria-labelledby="cite-bib_label" aria-hidden="true"> <div class="modal-dialog"> <div class="modal-content"> <div class="modal-header"> <button type="button" class="close" data-dismiss="modal" aria-hidden="true">×</button> <strong id="cite-bib_label">Cite: BibTeX Format</strong> </div> <div class="modal-body"> @article{osti_10528130,<br/> place = {Country unknown/Code not available}, title = {Connecting affordances of physical and virtual laboratory modes to engineering epistemic practices}, url = {https://par.nsf.gov/biblio/10528130}, DOI = {10.1007/s12528-024-09403-7}, abstractNote = {Laboratory activities are central to undergraduate student learning in science and engineering. With advancements in computer technology, many laboratory activities have shifted from providing students experiments in a physical mode to providing them in a virtual mode. Further, physical and virtual modes can be combined to address a single topic, as the modes have complementary affordances. In this paper, we report on the design and implementation of a physical and virtual laboratory on the topic of jar testing, a common process for drinking water treatment. The assignment for each laboratory mode was designed to leverage the mode’s affordances. Correspondingly, we hypothesized each would elicit a different subset of engineering epistemic practices. In a naturalistic, qualitative study design based on laboratory mode (physical or virtual) and laboratory order (virtual first or physical first), we collected process, product, and reflection data of students’ laboratory activity. Taking an orientation that learning is participation in valued disciplinary practice, data were coded and used to characterize how students engaged with each laboratory mode. Results showed that the virtual laboratory elicited more conceptual epistemic practices and the physical laboratory more material epistemic practices, aligning with the affordances of each mode. When students completed the laboratory in the virtual mode first, students demonstrated greater engagement in epistemic practices and more positive perceptions of their learning experience in the virtual mode than when they completed the physical mode first. In contrast, engagement in the physical mode was mostly unaffected by the laboratory order.}, journal = {Journal of Computing in Higher Education}, publisher = {Springer}, author = {Gavitte, Samuel B and Koretsky, Milo D and Nason, Jeffrey A}, }</div> <div class="modal-footer"> <button class="btn btn-sm btn-default" data-dismiss="modal" aria-hidden="true">Close</button> </div> </div> </div> </div></li> <li class="divider"></li> </ul> <ul class="nav nav-list" style="font-size: 14px; font-family: Arial Regular;"> <li class="nav-header header-format">Export Metadata</li> <li class="links-format"><a href="https://par.nsf.gov/endnote?osti_id=10528130">EndNote</a></li> <li class="links-format"><a href="https://par.nsf.gov/export/format:excel/osti-id:10528130">Excel</a></li> <li class="links-format"><a href="https://par.nsf.gov/export/format:csv/osti-id:10528130">CSV</a></li> <li class="links-format"><a href="https://par.nsf.gov/export/format:xml/osti-id:10528130">XML</a></li> <li class="divider"></li> </ul> <ul class="nav nav-list" style="font-size: 14px; font-family: Arial Regular;"> <li class="nav-header header-format">Save / Share this Record</li> <li class="links-format"><a href="#shareemail" data-toggle="modal">Send to Email</a> <div id="shareemail" class="modal" tabindex="-1" role="dialog" aria-labelledby="shareemail_label" aria-hidden="true"> <div class="modal-dialog"> <div class="modal-content"> <div class="modal-header"> <button type="button" class="close" data-dismiss="modal" aria-hidden="true">×</button> <strong id="shareemail_label" style="margin: 0px;">Send to Email</strong> </div> <form id="sendtoemail-form" style="margin-bottom: 0px;"> <div class="modal-body" id="shareemail_body"> <div class="modal-body-default"> <label for="sendtoemail-email">Email address:</label><br/> <input type="text" name="email" value="" class="col-md-5 input-sm form-control" id="sendtoemail-email"/> <input type="hidden" name="osti_id" id="sendtoemail-osti_id" value="10528130" /> <input type="hidden" name="subject" id="sendtoemail-subject" /> <div class="clearfix"></div> <div class="hide"><label for="sendtoemail-body">Content:</label></div> <textarea name="body" id="sendtoemail-body" style="display:none;"></textarea> </div> <div class="modal-body-submitted hide"> </div> </div> <div class="modal-footer"> <button class="btn btn-sm btn-default" data-dismiss="modal" aria-hidden="true">Close</button> <button class="btn btn-sm btn-default" aria-hidden="true" type="submit" id="shareemail_submit"> <span class="fa fa-envelope"></span> Send </button> </div> </form> </div> </div> </div> </li> </ul> </div> <div class="push_top"></div> </div> </div> </div> </div> </div> </div> <input type="hidden" id="host_url" value="https://par.nsf.gov"/> <input type="hidden" id="base_url" value="/"/> <input type="hidden" id="param_osti_id" value="10528130"/> <span id="highlight-data"> </span> </div> </div> <footer class="row" id="footer-wrapper"> <div class="footer-content"> <div id="footerOSTI" class=" hidden-print"> <ul> <li><a target="_blank" rel="noreferrer" href="http://www.nsf.gov/policies/">Website Policies</a> | <a target="_blank" rel="noreferrer" href="http://www.nsf.gov/about/performance/">Budget and Performance</a> | <a target="_blank" rel="noreferrer" href="http://www.nsf.gov/oig/">Inspector General</a> | <a target="_blank" rel="noreferrer" href="http://www.nsf.gov/policies/privacy.jsp">Privacy</a> | <a target="_blank" rel="noreferrer" href="http://www.nsf.gov/policies/foia.jsp">FOIA</a> | <a target="_blank" rel="noreferrer" href="http://www.nsf.gov/od/odi/notice.jsp">No FEAR Act</a> | <a target="_blank" rel="noreferrer" href="http://usa.gov">USA.gov</a> | <a target="_blank" rel="noreferrer" href="http://www.nsf.gov/policies/access.jsp">Accessibility</a> | <a target="_blank" rel="noreferrer" href="http://www.nsf.gov/policies/nsf_plain_language.jsp">Plain Language</a> | <a target="_blank" rel="noreferrer" href="http://www.nsf.gov/help/contact.jsp">Contact</a> | <a target="_blank" rel="noreferrer" href="https://nsf.gov/help/">Help</a> </li> </ul> The National Science Foundation, 2415 Eisenhower Avenue, Alexandria, Virginia 22314, USA Tel: (703) 292-5111, FIRS: (800) 877-8339 | TDD: (800) 281-8749 </div> </div> </footer> </div> <div id="authorselect" class="modal" tabindex="-1" role="dialog" aria-labelledby="authorselect_label" aria-hidden="true"> <div class="modal-dialog"> <div class="modal-content"> <div class="modal-header"> <button type="button" class="close" data-dismiss="modal" aria-hidden="true">×</button> <div id="authorselect_label">Author Select</div> </div> <form id="authorselect-form" style="margin-bottom: 0px;"> <input type="hidden" name="pg" id="authorselect-pg" value="1" /> <div class="modal-body" id="authorselect_body"> <div class="row"> <div class="col-md-4"> <label for="authorselect-lname">Last Name:</label><br /> <input type="text" name="lname" class="input-sm form-control" id="authorselect-lname" placeholder="Last name" /><br /> </div> <div class="col-md-4"> <label for="authorselect-fname">First Name:</label><br /> <input type="text" name="fname" class="input-sm form-control" id="authorselect-fname" placeholder="First name" /> </div> <div class="col-md-2">  <br /> <a href="#" onclick="$('#authorselect-form').submit(); return false;" class="btn btn-sm btn-default"><span class="fa fa-search"></span><span class="sr-only">Search</span></a> </div> </div> <div class="push_top"></div> <div class="row"> <div class="col-md-12"> <ul class="nav nav-tabs"> <li class="active"><a href="#authorselect-tab-res" id="authorselect-tab-res-btn" data-toggle="tab">Search Results</a></li> <li><a href="#authorselect-tab-sel" id="authorselect-tab-sel-btn" data-toggle="tab">Selected Authors</a></li> </ul> <div class="tab-content"> <div class="tab-pane active" id="authorselect-tab-res" style="max-height: 450px;"> <div class="padding text-muted" id="authorselect-tab-res-content">Type in a name, or the first few letters of a name, in one or both of appropriate search boxes above and select the search button. An attempt will be made to match authors that most closely relate to the text you typed.</div> </div> <div class="tab-pane" id="authorselect-tab-sel" style="max-height: 450px;"> <div class="padding text-muted" id="authorselect-tab-sel-content">No authors are currently selected. Choosing "Select These Authors" will enter a blank value for author search in the parent form.</div> </div> </div> </div> </div> </div> <div class="modal-footer"> <button class="btn btn-sm btn-default" data-dismiss="modal" aria-hidden="true">Close</button> <button class="btn btn-sm btn-default" aria-hidden="true" type="button" id="authorselect_review" onclick="$('#authorselect-tab-sel-btn').click();" style="display: none;">Review Selections</button> <button class="btn btn-sm btn-default" aria-hidden="true" type="button" id="authorselect_submit" onclick="authorSelectAddToForm(); $('#authorselect').modal('hide');">Add Selections</button> </div> </form> </div> </div> </div> <div id="editorselect" class="modal" tabindex="-1" role="dialog" aria-labelledby="editorselect_label" aria-hidden="true"> <div class="modal-dialog"> <div class="modal-content"> <div class="modal-header"> <button type="button" class="close" data-dismiss="modal" aria-hidden="true">×</button> <div id="editorselect_label">Editor Select</div> </div> <form id="editorselect-form" style="margin-bottom: 0px;"> <input type="hidden" name="pg" id="editorselect-pg" value="1" /> <div class="modal-body" id="editorselect_body"> <div class="row"> <div class="col-md-4"> <label for="editorselect-lname">Last Name:</label><br /> <input type="text" name="lname" class="input-sm form-control" id="editorselect-lname" placeholder="Last name" /><br /> </div> <div class="col-md-4"> <label for="editorselect-fname">First Name:</label><br /> <input type="text" name="fname" class="input-sm form-control" id="editorselect-fname" placeholder="First name" /> </div> <div class="col-md-2">  <br /> <a href="#" onclick="$('#editorselect-form').submit(); return false;" class="btn btn-sm btn-default"><span class="fa fa-search"></span><span class="sr-only">Search</span></a> </div> </div> <div class="push_top"></div> <div class="row"> <div class="col-md-12"> <ul class="nav nav-tabs"> <li class="active"><a href="#editorselect-tab-res" id="editorselect-tab-res-btn" data-toggle="tab">Search Results</a></li> <li><a href="#editorselect-tab-sel" id="editorselect-tab-sel-btn" data-toggle="tab">Selected Editors</a></li> </ul> <div class="tab-content"> <div class="tab-pane active" id="editorselect-tab-res" style="max-height: 450px;"> <div class="padding text-muted" id="editorselect-tab-res-content">Type in a name, or the first few letters of a name, in one or both of appropriate search boxes above and select the search button. An attempt will be made to match editors that most closely relate to the text you typed.</div> </div> <div class="tab-pane" id="editorselect-tab-sel" style="max-height: 450px;"> <div class="padding text-muted" id="editorselect-tab-sel-content">No editors are currently selected. Choosing "Select These Editors" will enter a blank value for editor search in the parent form.</div> </div> </div> </div> </div> </div> <div class="modal-footer"> <button class="btn btn-sm btn-default" data-dismiss="modal" aria-hidden="true">Close</button> <button class="btn btn-sm btn-default" aria-hidden="true" type="button" id="editorselect_review" onclick="$('#editorselect-tab-sel-btn').click();" style="display: none;">Review Selections</button> <button class="btn btn-sm btn-default" aria-hidden="true" type="button" id="editorselect_submit" onclick="editorSelectAddToForm();$('#editorselect').modal('hide');">Add Selections</button> </div> </form> </div> </div> </div> <div class="push_top"></div> <!-- External Link Modal --> <div class="modal fade" id="external-link-modal" tabindex="-1" role="dialog"> <div class="modal-dialog" role="document"> <div class="modal-content"> <div class="modal-header"> <button type="button" class="close nsf-close" data-dismiss="modal" aria-label="Close"> <span aria-hidden="true">×</span> </button> <h4 class="modal-title"><strong>Warning: Leaving National Science Foundation Website</strong></h4> </div> <div class="modal-body"> <div> <img src="https://par.nsf.gov/img/nsf/nsf_logo.png" width="292" height="53" alt="National Science Foundation Logo" border="0" /> </div> <br> <span>You are now leaving the National Science Foundation website to go to a non-government website.</span> <br> <br> Website: <a id="external-link-url" rel='noopener noreferrer' target='_blank'></a> <br> <br> <span> NSF takes no responsibility for and exercises no control over the views expressed or the accuracy of the information contained on this site. Also be aware that NSF's privacy policy does not apply to this site. </span> <br> <br> </div> <div class="modal-footer"> <div class="pull-right"> <button id="external-link-continue" type="button" data-extlink="" class="btn btn-primary" data-dismiss="modal"><u>Continue to Site</u></button> <button type="button" class="btn btn-default" data-dismiss="modal"><u>Cancel</u></button> </div> </div> </div> </div> </div> <!-- /content --> <input type='hidden' id='webtrend-id' value='dcsngbilzcxafpc7vw2qgbbij_3j2v'/> <input type='hidden' id='js-context-path' value='https://par.nsf.gov/'/> <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/latest.js?config=TeX-MML-AM_CHTML" defer></script> <script type="text/x-mathjax-config" defer> MathJax.Hub.Config({ tex2jax: {inlineMath: [['$','$'], ['\\(','\\)']]} }); </script> <noscript></noscript> <script src="https://par.nsf.gov/js/context.js" type="text/javascript" defer></script> <noscript>You must have javascript enabled</noscript> <script src="https://par.nsf.gov/js/libraries/jquery.min.js" type="text/javascript" defer></script> <noscript></noscript> <script src="https://par.nsf.gov/chosen/chosen.jquery.min.js" type="text/javascript" defer></script> <noscript></noscript> <script src="https://par.nsf.gov/js/nsf_pages.extras.min.js" type="text/javascript" defer></script> <noscript></noscript> <script src="https://par.nsf.gov/js/nsf_pages.min.js" type="text/javascript" defer></script> <noscript></noscript> <!--$$$$$$$$$ the following blocks are for WebTrends $$$$$$$$--> <!-- START OF SmartSource Data Collector TAG --> <!-- Copyright (c) 1996-2009 WebTrends Inc. All rights reserved. --> <!-- Version: 8.6.2 --> <!-- Tag Builder Version: 3.0 --> <!-- Created: 5/7/2009 8:32:37 PM --> <script src="https://par.nsf.gov/js/webtrends.min.js" type="text/javascript" defer></script> <noscript></noscript> <!-- ----------------------------------------------------------------------------------- --> <!-- Warning: The two script blocks below must remain inline. Moving them to an external --> <!-- JavaScript include file can cause serious problems with cross-domain tracking. --> <!-- ----------------------------------------------------------------------------------- --> <script src="https://par.nsf.gov/js/webtrend-script.min.js" type="text/javascript" defer></script> <noscript> <div><img alt="" id="DCSIMG" width="1" height="1" src="http://wt.research.gov/dcsngbilzcxafpc7vw2qgbbij_3j2v/njs.gif?dcsuri=/nojavascript&WT.js=No&DCS.dcscfg=1&WT.tv=8.6.2"/></div> </noscript> <script src="https://par.nsf.gov/js/webtrendsactions.min.js" type="text/javascript" defer></script> <noscript></noscript> <!-- $$$$$$$$ End WebTrends $$$$$ --> <!-- /scripts --> </body> <!-- NSF PAGES v.@project.version@ --> </html>