skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Approximately equivariant graph networks
Graph neural networks (GNNs) are commonly described as being permutation equivariant with respect to node relabeling in the graph. This symmetry of GNNs is often compared to the translation equivariance of Euclidean convolution neural networks (CNNs). However, these two symmetries are fundamentally different: The translation equivariance of CNNs corresponds to symmetries of the fixed domain acting on the image signals (sometimes known as active symmetries), whereas in GNNs any permutation acts on both the graph signals and the graph domain (sometimes described as passive symmetries). In this work, we focus on the active symmetries of GNNs, by considering a learning setting where signals are supported on a fixed graph. In this case, the natural symmetries of GNNs are the automorphisms of the graph. Since real-world graphs tend to be asymmetric, we relax the notion of symmetries by formalizing approximate symmetries via graph coarsening. We present a bias-variance formula that quantifies the tradeoff between the loss in expressivity and the gain in the regularity of the learned estimator, depending on the chosen symmetry group. To illustrate our approach, we conduct extensive experiments on image inpainting, traffic flow prediction, and human pose estimation with different choices of symmetries. We show theoretically and empirically that the best generalization performance can be achieved by choosing a suitably larger group than the graph automorphism, but smaller than the permutation group.  more » « less
Award ID(s):
2212457
PAR ID:
10528253
Author(s) / Creator(s):
; ;
Editor(s):
Oh, A; Naumann, T; Globerson, A; Saenko, K; Hardt, M; Levine, S
Publisher / Repository:
NeurIPS
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Incorporating group symmetry directly into the learning process has proved to be an effective guideline for model design. By producing features that are guaranteed to transform covariantly to the group actions on the inputs, group-equivariant convolutional neural networks (G-CNNs) achieve significantly improved generalization performance in learning tasks with intrinsic symmetry. General theory and practical implementation of G-CNNs have been studied for planar images under either rotation or scaling transformation, but only individually. We present, in this paper, a roto-scale-translation equivariant CNN (RST -CNN), that is guaranteed to achieve equivariance jointly over these three groups via coupled group convolutions. Moreover, as symmetry transformations in reality are rarely perfect and typically subject to input deformation, we provide a stability analysis of the equivariance of representation to input distortion, which motivates the truncated expansion of the convolutional filters under (pre-fixed) low-frequency spatial modes. The resulting model provably achieves deformation-robust RST equivariance, i.e., the RST symmetry is still “approximately” preserved when the transformation is “contaminated” by a nuisance data deformation, a property that is especially important for out-of-distribution generalization. Numerical experiments on MNIST, Fashion-MNIST, and STL-10 demonstrate that the proposed model yields remarkable gains over prior arts, especially in the small data regime where both rotation and scaling variations are present within the data. 
    more » « less
  2. Incorporating symmetry as an inductive bias into neural network architecture has led to improvements in generalization, data efficiency, and physical consistency in dynamics modeling. Methods such as CNNs or equivariant neural networks use weight tying to enforce symmetries such as shift invariance or rotational equivariance. However, despite the fact that physical laws obey many symmetries, real-world dynamical data rarely conforms to strict mathematical symmetry either due to noisy or incomplete data or to symmetry breaking features in the underlying dynamical system. We explore approximately equivariant networks which are biased towards preserving symmetry but are not strictly constrained to do so. By relaxing equivariance constraints, we find that our models can outperform both baselines with no symmetry bias and baselines with overly strict symmetry in both simulated turbulence domains and real-world multi-stream jet flow. 
    more » « less
  3. Incorporating group symmetry directly into the learning process has proved to be an effective guideline for model design. By producing features that are guaranteed to transform covariantly to the group actions on the inputs, group-equivariant convolutional neural net- works (G-CNNs) achieve significantly improved generalization performance in learning tasks with intrinsic symmetry. General theory and practical implementation of G-CNNs have been studied for planar images under either rotation or scaling transformation, but only individu- ally. We present, in this paper, a roto-scale-translation equivariant CNN (RST-CNN), that is guaranteed to achieve equivariance jointly over these three groups via coupled group con- volutions. Moreover, as symmetry transformations in reality are rarely perfect and typically subject to input deformation, we provide a stability analysis of the equivariance of representation to input distortion, which motivates the truncated expansion of the convolutional filters under (pre-fixed) low-frequency spatial modes. The resulting model provably achieves deformation-robust RS T equivariance, i.e., the RST symmetry is still “approximately” preserved when the transformation is “contaminated” by a nuisance data deformation, a property that is especially important for out-of-distribution generalization. Numerical experiments on MNIST, Fashion-MNIST, and STL-10 demonstrate that the proposed model yields remarkable gains over prior arts, especially in the small data regime where both rotation and scaling variations are present within the data. 
    more » « less
  4. We study the problem of learning equivariant neural networks via gradient descent. The incorporation of known symmetries ("equivariance") into neural nets has empirically improved the performance of learning pipelines, in domains ranging from biology to computer vision. However, a rich yet separate line of learning theoretic research has demonstrated that actually learning shallow, fully-connected (i.e. non-symmetric) networks has exponential complexity in the correlational statistical query (CSQ) model, a framework encompassing gradient descent. In this work, we ask: are known problem symmetries sufficient to alleviate the fundamental hardness of learning neural nets with gradient descent? We answer this question in the negative. In particular, we give lower bounds for shallow graph neural networks, convolutional networks, invariant polynomials, and frame-averaged networks for permutation subgroups, which all scale either superpolynomially or exponentially in the relevant input dimension. Therefore, in spite of the significant inductive bias imparted via symmetry, actually learning the complete classes of functions represented by equivariant neural networks via gradient descent remains hard. 
    more » « less
  5. The translation equivariance of convolutional layers enables convolutional neural networks to generalize well on image problems. While translation equivariance provides a powerful inductive bias for images, we often additionally desire equivariance to other transformations, such as rotations, especially for non-image data. We propose a general method to construct a convolutional layer that is equivariant to transformations from any specified Lie group with a surjective exponential map. Incorporating equivariance to a new group requires implementing only the group exponential and logarithm maps, enabling rapid prototyping. Showcasing the simplicity and generality of our method, we apply the same model architecture to images, ball-and-stick molecular data, and Hamiltonian dynamical systems. For Hamiltonian systems, the equivariance of our models is especially impactful, leading to exact conservation of linear and angular momentum. 
    more » « less