Cystic fibrosis (CF) is characterized by chronic respiratory infections which progressively decrease lung function over time. Affected individuals experience episodes of intensified respiratory symptoms called pulmonary exacerbations (PEx), which in turn accelerate pulmonary function decline and decrease survival rate. An overarching challenge is that there is no standard classification for PEx, which results in treatments that are heterogeneous. Improving PEx classification and management is a significant research priority for people with CF. Previous studies have shown volatile organic compounds (VOCs) in exhaled breath can be used as biomarkers because they are products of metabolic pathways dysregulated by different diseases. To provide insights on PEx classification and other CF clinical factors, exhaled breath samples were collected from 18 subjects with CF, with some experiencing PEx and others serving as a baseline. Exhaled breath was collected in Tedlar bags during tidal breathing and cryotransferred to headspace vials for VOC analysis by solid phase microextraction coupled to gas chromatography–mass spectrometry. Statistical significance testing between quantitative and categorical clinical variables displayed percent-predicted forced expiratory volume in one second (FEV1pp) was decreased in subjects experiencing PEx. VOCs correlating with other clinical variables (body mass index, age, use of highly effective modulator treatment (HEMT), and the need for inhaled tobramycin) were also explored. Two volatile aldehydes (octanal and nonanal) were upregulated in patients not taking the HEMT. VOCs correlating to potential confounding variables were removed and then analyzed by regression for significant correlations with FEV1pp measurements. Interestingly, the VOC with the highest correlation with FEV1pp (3,7-dimethyldecane) also gave the lowest
This content will become publicly available on December 1, 2024
This clinical study presents a comprehensive investigation into the utility of breath analysis as a non-invasive method for the early detection of lung cancer. The study enrolled 14 lung cancer patients, 14 non-lung cancer controls with diverse medical conditions, and 3 tuberculosis (TB) patients for biomarker discovery. Matching criteria including age, gender, smoking history, and comorbidities were strictly followed to ensure reliable comparisons. A systematic breath sampling protocol utilizing a BIO-VOC sampler was employed, followed by VOC analysis using Thermal Desorption–Gas Chromatography–Mass Spectrometry (TD-GC/MS). The resulting VOC profiles were subjected to stringent statistical analysis, including Orthogonal Projections to Latent Structures—Discriminant Analysis (OPLS-DA), Kruskal–Wallis test, and Receiver Operating Characteristic (ROC) analysis. Notably, 13 VOCs exhibited statistically significant differences between lung cancer patients and controls. The combination of eight VOCs (hexanal, heptanal, octanal, benzaldehyde, undecane, phenylacetaldehyde, decanal, and benzoic acid) demonstrated substantial discriminatory power with an area under the curve (AUC) of 0.85, a sensitivity of 82%, and a specificity of 76% in the discovery set. Validation in an independent cohort yielded an AUC of 0.78, a sensitivity of 78%, and a specificity of 64%. Further analysis revealed that elevated aldehyde levels in lung cancer patients’ breath could be attributed to overactivated Alcohol Dehydrogenase (ADH) pathways in cancerous tissues. Addressing methodological challenges, this study employed a matching of physiological and pathological confounders, controlled room air samples, and standardized breath sampling techniques. Despite the limitations, this study’s findings emphasize the potential of breath analysis as a diagnostic tool for lung cancer and suggest its utility in differentiating tuberculosis from lung cancer. However, further research and validation are warranted for the translation of these findings into clinical practice.
more » « less- Award ID(s):
- 2200299
- NSF-PAR ID:
- 10528309
- Publisher / Repository:
- Metabolites
- Date Published:
- Journal Name:
- Metabolites
- Volume:
- 13
- Issue:
- 12
- ISSN:
- 2218-1989
- Page Range / eLocation ID:
- 1197
- Subject(s) / Keyword(s):
- lung cancer detection breathomics
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract p -value when comparing subjects at baseline and during PEx. Other VOCs that were differentially expressed due to PEx that were identified in this study include durene, 2,4,4-trimethyl-1,3-pentanediol 1-isobutyrate and 5-methyltridecane. Receiver operator characteristic curves were developed and showed 3,7-dimethyldecane had higher ability to classify PEx (area under the curve (AUC) = 0.91) relative to FEV1pp values at collection (AUC = 0.83). However, normalized ΔFEV1pp values had the highest capability to distinguish PEx (AUC = 0.93). These results show that VOCs in exhaled breath may be a rich source of biomarkers for various clinical traits of CF, including PEx, that should be explored in larger sample cohorts and validation studies. -
e20551 Background: Enzyme activity is at the center of all biological processes. When these activities are misregulated by changes in sequence, expression, or activity, pathologies emerge. Misregulation of protease enzymes such as Matrix Metalloproteinases and Cathepsins play a key role in the pathophysiology of cancer. We describe here a novel class of graphene-based, cost effective biosensors that can detect altered protease activation in a blood sample from early stage lung cancer patients. Methods: The Gene Expression Omnibus (GEO) tool was used to identify proteases differentially expressed in lung cancer and matched normal tissue. Biosensors were assembled on a graphene backbone annotated with one of a panel of fluorescently tagged peptides. The graphene quenches fluorescence until the peptide is either cleaved by active proteases or altered by post-translational modification. 19 protease biosensors were evaluated on 431 commercially collected serum samples from non-lung cancer controls (69%) and pathologically confirmed lung cancer cases (31%) tested over two independent cohorts. Serum was incubated with each of the 19 biosensors and enzyme activity was measured indirectly as a continuous variable by a fluorescence plate reader. Analysis was performed using Emerge, a proprietary predictive and classification modeling system based on massively parallel evolving “Turing machine” algorithms. Each analysis stratified allocation into training and testing sets, and reserved an out-of-sample validation set for reporting. Results: 256 clinical samples were initially evaluated including 35% cancer cases evenly distributed across stages I (29%), II (26%), III (24%) and IV (21%). The case controls included common co-morbidies in the at-risk population such as COPD, chronic bronchitis, and benign nodules (19%). Using the Emerge classification analysis, biosensor biomarkers alone (no clinical factors) demonstrated Sensitivity (Se.) = 92% (CI 82%-99%) and Specificity (Sp.) = 82% (CI 69%-91%) in the out-of-sample set. An independent cohort of 175 clinical cases (age 67±8, 52% male) focused on early detection (26% cancer, 70% Stage I, 30% Stage II/III) were similarly evaluated. Classification showed Se. = 100% (CI 79%-100%) and Sp. = 93% (CI 80%-99%) in the out-of-sample set. For the entire dataset of 175 samples, Se. = 100% (CI 92%-100%) and Sp. = 97% (CI 92%-99%) was observed. Conclusions: Lung cancer can be treated if it is diagnosed when still localized. Despite clear data showing screening for lung cancer by Low Dose Computed Tomography (LDCT) is effective, screening compliance remains very low. Protease biosensors provide a cost effective additional specialized tool with high sensitivity and specificity in detection of early stage lung cancer. A large prospective trial of at-risk smokers with follow up is being conducted to evaluate a commercial version of this assay.more » « less
-
Abstract Breast cancer is the most common cancer detected in women and current screening methods for the disease are not sensitive. Volatile organic compounds (VOCs) include endogenous metabolites that provide information about health and disease which might be useful to develop a better screening method for breast cancer. The goal of this study was to classify mice with and without tumors and compare tumors localized to the mammary pad and tumor cells injected into the iliac artery by differences in VOCs in urine. After 4T1.2 tumor cells were injected into BALB/c mice either in the mammary pad or into the iliac artery, urine was collected, VOCs from urine headspace were concentrated by solid phase microextraction and results were analyzed by gas chromatography-mass spectrometry quadrupole time-of-flight. Multivariate and univariate statistical analyses were employed to find potential biomarkers for breast cancer and metastatic breast cancer in mice models. A set of six VOCs classified mice with and without tumors with an area under the receiver operator characteristic (ROC AUC) of 0.98 (95% confidence interval [0.85, 1.00]) via five-fold cross validation. Classification of mice with tumors in the mammary pad and iliac artery was executed utilizing a different set of six VOCs, with a ROC AUC of 0.96 (95% confidence interval [0.75, 1.00]).
-
Previously, the analysis of atomic force microscopy (AFM) images allowed us to distinguish normal from cancerous/precancerous human epithelial cervical cells using only the fractal dimension parameter. High-resolution maps of adhesion between the AFM probe and the cell surface were used in that study. However, the separation of cancerous and precancerous cells was rather poor (the area under the curve (AUC) was only 0.79, whereas the accuracy, sensitivity, and specificity were 74%, 58%, and 84%, respectively). At the same time, the separation between premalignant and malignant cells is the most significant from a clinical point of view. Here, we show that the introduction of machine learning methods for the analysis of adhesion maps allows us to distinguish precancerous and cancerous cervical cells with rather good precision (AUC, accuracy, sensitivity, and specificity are 0.93, 83%, 92%, and 78%, respectively). Substantial improvement in sensitivity is significant because of the unmet need in clinical practice to improve the screening of cervical cancer (a relatively low specificity can be compensated by combining this approach with other currently existing screening methods). The random forest decision tree algorithm was utilized in this study. The analysis was carried out using the data of six precancerous primary cell lines and six cancerous primary cell lines, each derived from different humans. The robustness of the classification was verified using K-fold cross-validation (K = 500). The results are statistically significant at p < 0.0001. Statistical significance was determined using the random shuffle method as a control.
-
Kazuhiro Maeshima (Ed.)
Abstract Supranucleosomal chromatin structure, including chromatin domain conformation, is involved in the regulation of gene expression and its dysregulation has been associated with carcinogenesis. Prior studies have shown that cells in the buccal mucosa carry a molecular signature of lung cancer among the cigarette-smoking population, the phenomenon known as field carcinogenesis or field of injury. Thus, we hypothesized that chromatin structural changes in buccal mucosa can be predictive of lung cancer. However, the small size of the chromatin chain (approximately 20 nm) folded into chromatin packing domains, themselves typically below 300 nm in diameter, preclude the detection of alterations in intradomain chromatin conformation using diffraction-limited optical microscopy. In this study, we developed an optical spectroscopic statistical nanosensing technique to detect chromatin packing domain changes in buccal mucosa as a lung cancer biomarker: chromatin-sensitive partial wave spectroscopic microscopy (csPWS). Artificial intelligence (AI) was applied to csPWS measurements of chromatin alterations to enhance diagnostic performance. Our AI-enhanced buccal csPWS nanocytology of 179 patients at two clinical sites distinguished Stage-I lung cancer versus cancer-free controls with an area under the ROC curve (AUC) of 0.92 ± 0.06 for Site 1 (in-state location) and 0.82 ± 0.11 for Site 2 (out-of-state location).