skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Understanding the neural mechanisms of empathy toward robots to shape future applications
This article provides an overview on how modern neuroscience evaluations link to robot empathy. It evaluates the brain correlates of empathy and caregiving, and how they may be related to the higher functions with an emphasis on women. We discuss that the understanding of the brain correlates can inform the development of social robots with enhanced empathy and caregiving abilities. We propose that the availability of these robots will benefit many aspects of the society including transition to parenthood and parenting, in which women are deeply involved in real life and scientific research. We conclude with some of the barriers for women in the field and how robotics and robot empathy research benefits from a broad representation of researchers.  more » « less
Award ID(s):
2114991 2115008
PAR ID:
10528346
Author(s) / Creator(s):
; ;
Publisher / Repository:
Frontiers
Date Published:
Journal Name:
Frontiers in Neurorobotics
Volume:
17
ISSN:
1662-5218
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Robots have great potential to support people with dementia (PwD) and their caregivers. They can provide support for daily living tasks, conduct household chores, provide companionship, and deliver cognitive stimulation and training. Personalizing these robots to an individual’s abilities and preferences can help enhance the quality of support they provide, increase their usability and acceptability, and alleviate caregiver burden. However, personalization can also introduce many risks, including risks to the safety and autonomy of PwD, the potential to exacerbate social isolation, and risks of being taken advantage of due to dark patterns in robot design. In this article, we weigh the risks and benefits by drawing on empirical data garnered from the existing ecosystem of robots used for dementia caregiving. We also explore ethical considerations for developing personalized cognitively assistive robots for PwD, including how a robot can practice beneficence to PwD, where responsibility falls when harm to a PwD occurs because of a robot, and how a robot can acquire informed consent from a PwD. We propose key technical and policy concepts to help robot designers, lawmakers, and others to develop personalized robots that protect users from unintended consequences, particularly for people with cognitive impairments. 
    more » « less
  2. Robots have great potential to support people with dementia (PwD) and their caregivers. They can provide support for daily living tasks, conduct household chores, provide companionship, and deliver cognitive stimulation and training. Personalizing these robots to an individual’s abilities and preferences can help enhance the quality of support they provide, increase their usability and acceptability, and alleviate caregiver burden. However, personalization can also introduce many risks, including risks to the safety and autonomy of PwD, the potential to exacerbate social isolation, and risks of being taken advantage of due to dark patterns in robot design. In this article, we weigh the risks and benefits by drawing on empirical data garnered from the existing ecosystem of robots used for dementia caregiving. We also explore ethical considerations for developing personalized cognitively assistive robots for PwD, including how a robot can practice beneficence to PwD, where responsibility falls when harm to a PwD occurs because of a robot, and how a robot can acquire informed consent from a PwD. We propose key technical and policy concepts to help robot designers, lawmakers, and others to develop personalized robots that protect users from unintended consequences, particularly for people with cognitive impairments. 
    more » « less
  3. Soft robotics is a rapidly growing area of robotics research that would benefit greatly from design automation, given the challenges of manually engineering complex, compliant, and generally non-intuitive robot body plans and behaviors. It has been suggested that a major hurdle currently limiting soft robot brain-body co-optimization is the fragile specialization between a robot's controller and the particular body plan it controls, resulting in premature convergence. Here we posit that modular controllers are more robust to changes to a robot's body plan. We demonstrate a decreased reduction in locomotion performance after morphological mutations to soft robots with modular controllers, relative to those with similar global controllers - leading to fitter offspring. Moreover, we show that the increased transferability of modular controllers to similar body plans enables more effective brain-body co-optimization of soft robots, resulting in an increased rate of positive morphological mutations and higher overall performance of evolved robots. We hope that this work helps provide specific methods to improve soft robot design automation in this particular setting, while also providing evidence to support our understanding of the challenges of brain-body co-optimization more generally. 
    more » « less
  4. null (Ed.)
    There is growing evidence that emphasizing the social and personal contexts of engineering can open up the field to people who have been conspicuously underrepresented, particularly women and girls. Recent research and advances in educational policy have advocated for reframing engineering education to prioritize social responsibility, empathy, and care for others as integral aspects of engineering practice. But how do we measure things like empathy in engineering practices of younger children? This paper features work from a three-year design-based research project in which we used narrative elements to frame engineering problems in ways that evoked empathy for others’ needs, and examined the intersections between expressions of empathy and engineering design practices among girls ages 7-14. This paper outlines the theoretical underpinnings of this approach, and our methods for observing empathy and engineering practices in this age group. 
    more » « less
  5. Abstract Many invertebrates are ideal model systems on which to base robot design principles due to their success in solving seemingly complex tasks across domains while possessing smaller nervous systems than vertebrates. Three areas are particularly relevant for robot designers: Research on flying and crawling invertebrates has inspired new materials and geometries from which robot bodies (their morphologies) can be constructed, enabling a new generation of softer, smaller, and lighter robots. Research on walking insects has informed the design of new systems for controlling robot bodies (their motion control) and adapting their motion to their environment without costly computational methods. And research combining wet and computational neuroscience with robotic validation methods has revealed the structure and function of core circuits in the insect brain responsible for the navigation and swarming capabilities (their mental faculties) displayed by foraging insects. The last decade has seen significant progress in the application of principles extracted from invertebrates, as well as the application of biomimetic robots to model and better understand how animals function. This Perspectives paper on the past 10 years of the Living Machines conference outlines some of the most exciting recent advances in each of these fields before outlining lessons gleaned and the outlook for the next decade of invertebrate robotic research. 
    more » « less