skip to main content


This content will become publicly available on July 30, 2025

Title: Fast finite difference solver for optical microscopy in deep biological tissue

Optical scattering poses a significant challenge to high-resolution microscopy within deep tissue. To accurately predict the performance of various microscopy techniques in thick samples, we present a computational model that efficiently solves Maxwell’s equation in highly scattering media. This toolkit simulates the deterioration of the laser beam point spread function (PSF) without making a paraxial approximation, enabling accurate modeling of high-numerical-aperture (NA) objective lenses commonly employed in experiments. Moreover, this framework is applicable to a broad range of scanning microscopy techniques including confocal microscopy, stimulated emission depletion (STED) microscopy, and ground-state depletion microscopy. Notably, the proposed method requires only readily obtainable macroscopic tissue parameters. As a practical demonstration, we investigate the performance of Laguerre–Gaussian (LG) versus Hermite–Gaussian (HG) depletion beams in STED microscopy.

 
more » « less
NSF-PAR ID:
10528376
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optics Letters
Volume:
49
Issue:
15
ISSN:
0146-9592; OPLEDP
Format(s):
Medium: X Size: Article No. 4417
Size(s):
Article No. 4417
Sponsoring Org:
National Science Foundation
More Like this
  1. We numerically compare the null quality for STED microscopy generated by Laguerre-Gaussian beams with orbital angular momentum and donut beams generated by incoherent addition of orthogonal Hermite Gaussian beams when imaging deep biological tissue.

     
    more » « less
  2. Quantum dot (QD) solids are promising optoelectronic materials; further advancing their device functionality requires understanding their energy transport mechanisms. The commonly invoked near-field Förster resonance energy transfer (FRET) theory often underestimates the exciton hopping rate in QD solids, yet no consensus exists on the underlying cause. In response, we use time-resolved ultrafast stimulated emission depletion (STED) microscopy, an ultrafast transformation of STED to spatiotemporally resolve exciton diffusion in tellurium-doped cadmium selenide–core/cadmium sulfide–shell QD superlattices. We measure the concomitant time-resolved exciton energy decay due to excitons sampling a heterogeneous energetic landscape within the superlattice. The heterogeneity is quantified by single-particle emission spectroscopy. This powerful multimodal set of observables provides sufficient constraints on a kinetic Monte Carlo simulation of exciton transport to elucidate a composite transport mechanism that includes both near-field FRET and previously neglected far-field emission/reabsorption contributions. Uncovering this mechanism offers a much-needed unified framework in which to characterize transport in QD solids and additional principles for device design.

     
    more » « less
  3. Abstract

    We present results for a new type of fiber-coupled stimulated emission depletion (STED) microscope which uses a single fiber to transport STED and excitation light, as well as collect the fluorescence signal. Our method utilizes two higher-order eigenmodes of polarization maintaining (PM) fiber to generate the doughnut-shaped STED beam. The modes are excited with separate beams that share no temporal coherence, yielding output that is independent of fiber bending. We measured the resolution using 45 nm fluorescent beads and found a median bead image size of 116 nm. This resolution does not change as function of fiber bending radius, demonstrating robust operation. We report, for the first time, STED images of fixed biological samples collected in the epi-direction through fiber. Our microscope design shows promise for future use in super-resolution micro-endoscopes andin vivoneural imaging in awake and freely-behaving animals.

     
    more » « less
  4. We studied the use of vibrationally resonant, third-order sum-frequency generation (TSFG) for imaging of biological samples. We found that laser-scanning TSFG provides vibrationally sensitive imaging capabilities of lipid droplets and structures in sectioned tissue samples. Although the contrast is based on the infrared-activity of molecular modes, TSFG images exhibit a high lateral resolution of 0.5µm or better. We observed that the imaging properties of TSFG resemble the imaging properties of coherent anti-Stokes Raman scattering (CARS) microscopy, offering a nonlinear infrared alternative to coherent Raman methods. TSFG microscopy holds promise as a high-resolution imaging technique in the fingerprint region where coherent Raman techniques often provide insufficient sensitivity.

     
    more » « less
  5. Fluorescence microscopy imaging speed is fundamentally limited by the measurement signal-to-noise ratio (SNR). To improve image SNR for a given image acquisition rate, computational denoising techniques can be used to suppress noise. However, common techniques to estimate a denoised image from a single frame either are computationally expensive or rely on simple noise statistical models. These models assume Poisson or Gaussian noise statistics, which are not appropriate for many fluorescence microscopy applications that contain quantum shot noise and electronic Johnson–Nyquist noise, therefore a mixture of Poisson and Gaussian noise. In this paper, we show convolutional neural networks (CNNs) trained on mixed Poisson and Gaussian noise images to overcome the limitations of existing image denoising methods. The trained CNN is presented as an open-source ImageJ plugin that performs real-time image denoising (within tens of milliseconds) with superior performance (SNR improvement) compared to conventional fluorescence microscopy denoising methods. The method is validated on external datasets with out-of-distribution noise, contrast, structure, and imaging modalities from the training data and consistently achieves high-performance (><#comment/>8dB) denoising in less time than other fluorescence microscopy denoising methods.

     
    more » « less