This perspective highlights recent advances in super-resolution, mid-infrared imaging and spectroscopy. It provides an overview of the different near field microscopy techniques developed to address the problem of chemically imaging specimens in the mid-infrared “fingerprint” region of the spectrum with high spatial resolution. We focus on a recently developed far-field optical technique, called infrared photothermal heterodyne imaging (IR-PHI), and discusses the technique in detail. Its practical implementation in terms of equipment used, optical geometries employed, and underlying contrast mechanism are described. Milestones where IR-PHI has led to notable advances in bioscience and materials science are summarized. The perspective concludes with a future outlook for robust and readily accessible high spatial resolution, mid-infrared imaging and spectroscopy techniques.
more »
« less
Optical super-resolution nanothermometry via stimulated emission depletion imaging of upconverting nanoparticles
From engineering improved device performance to unraveling the breakdown of classical heat transfer laws, far-field optical temperature mapping with nanoscale spatial resolution would benefit diverse areas. However, these attributes are traditionally in opposition because conventional far-field optical temperature mapping techniques are inherently diffraction limited. Optical super-resolution imaging techniques revolutionized biological imaging, but such approaches have yet to be applied to thermometry. Here, we demonstrate a super-resolution nanothermometry technique based on highly doped upconverting nanoparticles (UCNPs) that enable stimulated emission depletion (STED) super-resolution imaging. We identify a ratiometric thermometry signal and maintain imaging resolution better than ~120 nm for the relevant spectral bands. We also form self-assembled UCNP monolayers and multilayers and implement a detection scheme with scan times >0.25 μm2/min. We further show that STED nanothermometry reveals a temperature gradient across a joule-heated microstructure that is undetectable with diffraction limited thermometry, indicating the potential of this technique to uncover local temperature variation in wide-ranging practical applications.
more »
« less
- Award ID(s):
- 2142140
- PAR ID:
- 10597642
- Publisher / Repository:
- American Association for the Advancement of Science
- Date Published:
- Journal Name:
- Science Advances
- Volume:
- 10
- Issue:
- 29
- ISSN:
- 2375-2548
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Label‐free super‐resolution (LFSR) imaging relies on light‐scattering processes in nanoscale objects without a need for fluorescent (FL) staining required in super‐resolved FL microscopy. The objectives of this Roadmap are to present a comprehensive vision of the developments, the state‐of‐the‐art in this field, and to discuss the resolution boundaries and hurdles that need to be overcome to break the classical diffraction limit of the label‐free imaging. The scope of this Roadmap spans from the advanced interference detection techniques, where the diffraction‐limited lateral resolution is combined with unsurpassed axial and temporal resolution, to techniques with true lateral super‐resolution capability that are based on understanding resolution as an information science problem, on using novel structured illumination, near‐field scanning, and nonlinear optics approaches, and on designing superlenses based on nanoplasmonics, metamaterials, transformation optics, and microsphere‐assisted approaches. To this end, this Roadmap brings under the same umbrella researchers from the physics and biomedical optics communities in which such studies have often been developing separately. The ultimate intent of this paper is to create a vision for the current and future developments of LFSR imaging based on its physical mechanisms and to create a great opening for the series of articles in this field.more » « less
-
Highly parallelized optical super-resolution lithography techniques are key for realizing bulk volume nanopatterning in materials. The majority of demonstrated STED-inspired lithography schemes are serial writing techniques. Here we use a recently developed model spirothiopyran monolayer photoresist to study the non-equilibrium kinetics of STED-inspired lithography systems to achieve large area interference lithography with super-resolved feature dimensions. The linewidth is predicted to increase with exposure time and the contrast is predicted to go through a maximum, resulting in a narrow window of optimum exposure. Experimental results are found to match with high quantitative accuracy. The low photoinhibition saturation threshold of the spirothiopyran renders it especially conducive for parallelized large area nanopatterning. Lines with 56 and 92 nm FWHM were obtained using serial and parallel patterning, respectively. Functionalization of surfaces with heterobifunctional PEGs enables diverse patterning of any desired chemical functionality on these monolayers. These results provide important insight prior to realizing a highly parallelized volume nanofabrication technique.more » « less
-
We demonstrate a thermoreflectance-based thermometry technique with an ultimate temperature resolution of 60 µK in a 2.6 mHz bandwidth. This temperature resolution was achieved using a 532 nm-wavelength probe laser and a ∼1 µm-thick silicon transducer film with a thermoreflectance coefficient of −4.7 × 10−3 K−1at room temperature. The thermoreflectance sensitivity reported here is over an order-of-magnitude greater than that of metal transducers, and is comparable to the sensitivity of traditional resistance thermometers. Supporting calculations reveal that the enhancement in sensitivity is due to optical interference in the thin film.more » « less
-
Featuring broadband operation and high efficiency, gallium nitride (GaN)-based radio frequency (RF) power amplifiers are key components to realize the next generation mobile network. However, to fully implement GaN high electron mobility transistors (HEMT) for such applications, it is necessary to overcome thermal reliability concerns stemming from localized extreme temperature gradients that form under high voltage and power operation. In this work, we developed a deep-ultraviolet thermoreflectance thermal imaging capability, which can potentially offer the highest spatial resolution among diffraction-limited far-field optical thermography techniques. Experiments were performed to compare device channel temperatures obtained from near-ultraviolet and deep-ultraviolet wavelength illumination sources for the proof of concept of the new characterization method. Deep-ultraviolet thermoreflectance imaging will facilitate the study of device self-heating within transistors based on GaN and emerging ultra-wide bandgap semiconductors (e.g., β-Ga2O3, AlxGa1-xN, and diamond) subjected to simultaneous extreme electric field and heat flux conditions.more » « less
An official website of the United States government

