The stability of metal–organic frameworks (MOFs) in water affects their ability to function as chemical catalysts, their capacity as adsorbents for separations in water vapor presence, and their usefulness as recyclable water harvesters. Here, we have examined water stability of four node-modified variants of the mesoporous MOF, NU-1000, namely formate-, Acac-, TFacac-, and Facac-NU-1000, comparing these with node-accessible NU-1000. These NU-1000 variants present ligands grafted to NU-1000's hexa-Zr( iv )-oxy nodes by displacing terminal aqua and hydroxo ligands. Facac-NU-1000, containing the most hydrophobic ligands, showed the greatest water stability, being able to undergo at least 20 water adsorption/desorption cycles without loss of water uptake capacity. Computational studies revealed dual salutary functions of installed Facac ligands: (1) enhancement of framework mechanical stability due to electrostatic interactions; and (2) transformation and shielding of the otherwise highly hydrophilic nodes from H-bonding interactions with free water, presumably leading to weaker channel-stressing capillary forces during water evacuation – consistent with trends in free energies of dehydration across the NU-1000 variants. Water harvesting and hydrolysis of chemical warfare agent simulants were examined to gauge the functional consequences of modification and mechanical stabilization of NU-1000 by Facac ligands. The studies revealed a harvesting capacity of ∼1.1 L of water vapor per gram of Facac-NU-1000 per sorption cycle. They also revealed retention of catalytic MOF activity following 20 water uptake and release cycles. This study provides insights into the basis for node-ligand-engendered stabilization of wide-channel MOFs against collapse during water removal.
more »
« less
Metal-organic frameworks for water vapor adsorption
Water is the most abundant and cleanest natural resource on earth, and it is the driving force of all nature. It not only affects food security, human health, and ecosystem integrity and maintenance, but is also an important driver of energy in industrial production and life. Importantly, water adsorption applications are considered to be highly energy-efficient and environmentally friendly technologies,1 including atmospheric water harvesting,2-4 desiccation of clean gases,5 indoor humidity control,6,7 and adsorptive heat transformation.8,9 However, current water adsorption-related applications are still constrained by properties of adsorbents, such as their low water uptake capacities, poor cyclic stabilities, limited feasibilities over a range of humidity conditions, and minimal commercial availabilities. Conventional nanoporous materials (e.g., silica gels, zeolites, and clays) were the first adsorbents used in water capture applications due to their low cost, commercial availability, and favorable water adsorption kinetics. However, these materials generally suffer from either low water uptake capacities or high regeneration temperature, limiting their use in practical water absorption applications.1,10 Metal-organic frameworks (MOFs), a class of crystalline porous materials, are assembled from inorganic nodes and organic linkers through coordination bonds.11,12 Benefiting from their exceptional porosity and surface area, tunable pore size and geometry, and highly tailorable and designable structures and functionalities, MOFs show considerable potential for gas storage and separation, heterogeneous catalysis, and other energy and environmental sustainability applications.13-17 In recent years, MOFs have also shown great potential for water vapor adsorption because of a growing understanding of the relationship between MOFs and water, as well as an increasing number of reports detailing MOFs that exhibit high water stability.1,4,9 Moreover, judicious design of the MOF structures enables control over their water adsorption properties and the water uptake capacities, which make MOFs ideal candidates for water adsorption-related applications. This review aims to provide an overview of recent advances in the development of MOFs for water adsorption, as well as to offer proposed guidelines to develop even better water adsorption materials. First, we briefly introduce the fundamentals of water adsorption, including how to ascertain key insights based on the shapes of water adsorption isotherms, descriptions of various water adsorption mechanisms, and a discussion on the stability of MOFs in water systems. Next, we discuss several recent reports have detailed how to improve water uptake capacity through the design and synthesis of MOFs. In particular, we highlight the importance of reticular chemistry in the designed synthesis of MOF-based water adsorbent materials. We then shift our focus to discussing the enormous potential of MOFs for use in selective water vapor adsorption applications with both theoretical and practical considerations considered. Finally, we offer our thoughts on the future development of this field in three aspects: chemistry and materials design, process engineering, and commercialization of MOFs for water adsorption. We hope that this review will provide fundamental insights for chemists and inspire them to synthesize MOFs with better water adsorption performance; and provide assistance to engineers researching MOF-based water adsorption devices and working towards the development of highly energy-efficient and environmentally friendly technologies with reduced carbon footprints.
more »
« less
- Award ID(s):
- 2119433
- PAR ID:
- 10528504
- Publisher / Repository:
- Cell Press
- Date Published:
- Journal Name:
- Chem
- Volume:
- 10
- Issue:
- 2
- ISSN:
- 2451-9294
- Page Range / eLocation ID:
- 484 to 503
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
CO2capture from post-combustion flue gas originating from coal or natural gas power plants, or even from the ambient atmosphere, is a promising strategy to reduce the atmospheric CO2concentration and achieve global decarbonization goals. However, the co-existence of water vapor in these sources presents a significant challenge, as water often competes with CO2for adsorption sites, thereby diminishing the performance of adsorbent materials. Selectively capturing CO2in the presence of moisture is a key goal, as there is a growing demand for materials capable of selectively adsorbing CO2under humid conditions. Among these, metal–organic frameworks (MOFs), a class of porous, highly tunable materials, have attracted extensive interest for gas capture, storage, and separation applications. The numerous combinations of secondary building units and organic linkers offer abundant opportunities for designing systems with enhanced CO2selectivity. Interestingly, some recent studies have demonstrated that interactions between water and CO2within the confined pore space of MOFs can enhance CO2uptake, flipping the traditionally detrimental role of moisture into a beneficial one. These findings introduce a new paradigm: water-enhanced CO2capture in MOFs. In this review, we summarize these recent discoveries, highlighting examples of MOFs that exhibit enhanced CO2adsorption under humid conditions compared to dry conditions. We discuss the underlying mechanisms, design strategies, and structural features that enable this behavior. Finally, we offer a brief perspective on future directions for MOF development in the context of water-enhanced CO2capture.more » « less
-
Metal–organic frameworks (MOFs), along with other novel adsorbents, are frequently proposed as candidate materials to selectively adsorb CO 2 for carbon capture processes. However, adsorbents designed to strongly bind CO 2 nearly always bind H 2 O strongly (sometimes even more so). Given that water is present in significant quantities in the inlet streams of most carbon capture processes, a method that avoids H 2 O competition for the CO 2 binding sites would be technologically valuable. In this paper, we consider a novel core–shell MOF design strategy, where a high-CO 2 -capacity MOF “core” is protected from competitive H 2 O-binding via a MOF “shell” that has very slow water diffusion. We consider a high-frequency adsorption/desorption cycle that regenerates the adsorbents before water can pass through the shell and enter the core. To identify optimal core–shell MOF pairs, we use a combination of experimental measurements, computational modeling, and multiphysics modeling. Our library of MOFs is created from two starting MOFs-UiO-66 and UiO-67-augmented with 30 possible functional group variations, yielding 1740 possible core–shell MOF pairs. After defining a performance score to rank these pairs, we identified 10 core–shell MOF candidates that significantly outperform any of the MOFs functioning alone.more » « less
-
Metal–organic frameworks (MOFs), with their unique porous structures and versatile functionality, have emerged as promising materials for the adsorption, separation, and storage of diverse molecular species. In this study, we investigate water adsorption in MOF-808, a prototypical MOF that shares the same secondary building unit (SBU) as UiO-66, and elucidate how differences in topology and connectivity between the two MOFs influence the adsorption mechanism. To this end, molecular dynamics simulations were performed to calculate several thermodynamic and dynamical properties of water in MOF-808 as a function of relative humidity (RH), from the initial adsorption step to full pore filling. At low RH, the μ3-OH groups of the SBUs form hydrogen bonds with the initial water molecules entering the pores, which triggers the filling of these pores before the μ3-OH groups in other pores become engaged in hydrogen bonding with water molecules. Our analyses indicate that the pores of MOF-808 become filled by water sequentially as the RH increases. A similar mechanism has been reported for water adsorption in UiO-66. Despite this similarity, our study highlights distinct thermodynamic properties and framework characteristics that influence the adsorption process differently in MOF-808 and UiO-66.more » « less
-
Many metal-organic frameworks (MOFs) are known to show complex structural flexibility such as breathing, swelling, and linker rotations, and understanding the impact of these structural changes on their guest adsorption properties is important in developing MOFs for practical applications. In this study, we used a multi-scale computational approach to provide a molecular-level understanding of how flexibility affects water adsorption in the MOF, NbOFFIVE-1-Ni. This material has narrow pores and good hydrothermal stability, which make it attractive for CO2 capture. We utilized density functional theory (DFT) calculations and grand canonical Monte Carlo (GCMC) simulations to study the impact of NbOFFIVE-1-Ni structural flexibility on its water adsorption at different humidity conditions. Studying the water adsorption in different configurations of NbOFFIVE-1-Ni demonstrated that DFT optimization in the presence of adsorbed water molecules and rotating the linkers are useful strategies to mimic its structural flexibility. Our results illustrate the significance of taking structural flexibility into account when designing MOFs for water adsorption and other relevant applications.more » « less
An official website of the United States government

