skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Quantum simulation of conical intersections
We explore the simulation of conical intersections (CIs) on quantum devices, setting the groundwork for potential applications in nonadiabatic quantum dynamics within molecular systems.  more » « less
Award ID(s):
2155082 2037783
PAR ID:
10528512
Author(s) / Creator(s):
;
Publisher / Repository:
Physical Chemistry Chemical Physics
Date Published:
Journal Name:
Physical Chemistry Chemical Physics
Volume:
26
Issue:
15
ISSN:
1463-9076
Page Range / eLocation ID:
11491 to 11497
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Optical photons are powerful carriers of quantum information, which can be delivered in free space by satellites or in fibers on the ground over long distances. Entanglement of quantum states over long distances can empower quantum computing, quantum communications, and quantum sensing. Quantum optical memories are devices designed to store quantum information in the form of stationary excitations, such as atomic coherence, and are capable of coherently mapping these excitations to flying qubits. Quantum memories can effectively store and manipulate quantum states, making them indispensable elements in future long-distance quantum networks. Over the past two decades, quantum optical memories with high fidelities, high efficiencies, long storage times, and promising multiplexing capabilities have been developed, especially at the single-photon level. In this review, we introduce the working principles of commonly used quantum memory protocols and summarize the recent advances in quantum memory demonstrations. We also offer a vision for future quantum optical memory devices that may enable entanglement distribution over long distances. 
    more » « less
  2. Quantum programs are notoriously difficult to code and verify due to unintuitive quantum knowledge associated with quantum programming. Automated tools relieving the tedium and errors associated with low-level quantum details would hence be highly desirable. In this paper, we initiate the study of program synthesis for quantum unitary programs that recursively define a family of unitary circuits for different input sizes, which are widely used in existing quantum programming languages. Specifically, we present QSynth, the first quantum program synthesis framework, including a new inductive quantum programming language, its specification, a sound logic for reasoning, and an encoding of the reasoning procedure into SMT instances. By leveraging existing SMT solvers, QSynth successfully synthesizes ten quantum unitary programs including quantum adder circuits, quantum eigenvalue inversion circuits and Quantum Fourier Transformation, which can be readily transpiled to executable programs on major quantum platforms, e.g., Q#, IBM Qiskit, and AWS Braket. 
    more » « less
  3. Quantum technology promises to revolutionize how we learn about the physical world. An experiment that processes quantum data with a quantum computer could have substantial advantages over conventional experiments in which quantum states are measured and outcomes are processed with a classical computer. We proved that quantum machines could learn from exponentially fewer experiments than the number required by conventional experiments. This exponential advantage is shown for predicting properties of physical systems, performing quantum principal component analysis, and learning about physical dynamics. Furthermore, the quantum resources needed for achieving an exponential advantage are quite modest in some cases. Conducting experiments with 40 superconducting qubits and 1300 quantum gates, we demonstrated that a substantial quantum advantage is possible with today’s quantum processors. 
    more » « less
  4. Abstract Designing quantum algorithms for simulating quantum systems has seen enormous progress, yet few studies have been done to develop quantum algorithms for open quantum dynamics despite its importance in modeling the system-environment interaction found in most realistic physical models. In this work we propose and demonstrate a general quantum algorithm to evolve open quantum dynamics on quantum computing devices. The Kraus operators governing the time evolution can be converted into unitary matrices with minimal dilation guaranteed by the Sz.-Nagy theorem. This allows the evolution of the initial state through unitary quantum gates, while using significantly less resource than required by the conventional Stinespring dilation. We demonstrate the algorithm on an amplitude damping channel using the IBM Qiskit quantum simulator and the IBM Q 5 Tenerife quantum device. The proposed algorithm does not require particular models of dynamics or decomposition of the quantum channel, and thus can be easily generalized to other open quantum dynamical models. 
    more » « less
  5. IntroductionQuantum computing is increasingly being investigated for integration into medical radiology and healthcare applications worldwide. Given its potential to enhance clinical care and medical research, there is growing interest in evaluating its practical applications in clinical workflows. MethodsWe developed an evaluation of quantum computing-based auto-contouring methods to introduce medical physicists to this emerging technology. We implemented existing quantum algorithms as prototypes tailored for specific quantum hardware, focusing on their application to auto-contouring in medical imaging. The evaluation was performed using a medical resonance imaging (MRI) abdominal dataset, comprising 102 patient scans. ResultsThe quantum algorithms were applied to the dataset and assessed for their potential in auto-contouring tasks. One of the quantum-based auto contouring methods demonstrated conceptual feasibility, practical performance is still limited by current available quantum hardware and scalability constraints. DiscussionOur findings suggest that while quantum computing for auto-contouring shows promise, it remains in its early stages. At present, artificial intelligence-based algorithms continue to be the preferred choice for auto-contouring in treatment planning due to their greater efficiency and accuracy. As quantum hardware and algorithms mature, their integration into clinical workflows may become more viable. 
    more » « less