skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Designing and Evaluating a Testbed for the Matter Protocol: Insights into User Experience
As the integration of smart devices into our daily environment accelerates, the vision of a fully integrated smart home is becoming more achievable through standards such as the Matter protocol. In response, this research paper explores the use of Matter in addressing the heterogeneity and interoperability problems of smart homes. We built a testbed and introduce a network utility device, designed to sniff network traffic and provide a wireless access point within IoT networks. This paper also presents the experience of students using the testbed in an academic scenario.  more » « less
Award ID(s):
1955805
PAR ID:
10528567
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
www.ndss-symposium.org
Date Published:
Subject(s) / Keyword(s):
Matter, network traffic sniffing, academic implementation
Format(s):
Medium: X
Location:
San Diego, CA, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. As the integration of smart devices into our daily environment accelerates, the vision of a fully integrated smart home is becoming more achievable through standards such as the Matter protocol. In response, this research paper explores the use of Matter in addressing the heterogeneity and interoperability problems of smart homes. We built a testbed and introduce a network utility device, designed to sniff network traffic and provide a wireless access point within IoT networks. This paper also presents the experience of students using the testbed in an academic scenario. 
    more » « less
  2. Project Connected Home over IP, known as Matter, a unifying standard for the smart home, will begin formal device certification in late 2022. The standard will prioritize connectivity using short-range wireless communication protocols such as Wi-Fi, Thread, and Ethernet. The standard will also include emerging technologies such as Blockchain for device certification and security. In this paper, we rely on the Matter protocol to solve the long-standing heterogeneity problem in smart homes. This work presents a hardware Testbed built using development kits, as there is currently very few devices supporting Matter protocol. In addition, it presents a network architecture that automates smart homes to cloud services. The work is a simple and cheap way of developing a Testbed for automating smart homes that uses Matter protocol. The architecture lays the foundation for exploring security and privacy issues, data collection analysis, and data provenance in a smart home ecosystem built on Matter protocol. 
    more » « less
  3. The testbed presented in this study supplies various devices to emulate a smart home. The paper highlights how devices can be connected and programmed to perform functions using an application programming interface. Remote-controlled robots in the testbed enable a user to manipulate, monitor, and configure home-based Internet-of-Things (IoT) technologies. The paper describes the equipment used in the testbed, including a wireless security camera, a smart lock, a climate sensor, and two types of robots. Security measures implemented in the testbed are also discussed. Several application scenarios are presented and analyzed on how they were accomplished to demonstrate the functionalities. The smart home testbed is a useful resource for education and development, as it allows for sufficient performance using a single control point. 
    more » « less
  4. The ongoing electrification of the transportation fleet will increase the load on the electric power grid. Since both the transportation network and the power grid already experience periods of significant stress, joint analyses of both infrastructures will most likely be necessary to ensure acceptable operation in the future. To enable such analyses, this paper presents an open- source testbed that jointly simulates high-fidelity models of both the electric distribution system and the transportation network. The testbed utilizes two open-source simulators, OpenDSS to simulate the electric distribution system and the microscopic traffic simulator SUMO to simulate the traffic dynamics. Electric vehicle charging links the electric distribution system and the transportation network models at vehicle locations determined using publicly available parcel data. Leveraging high-fidelity synthetic electric distribution system data from the SMART-DS project and transportation system data from OpenStreetMap, this testbed models the city of Greensboro, NC down to the household level. Moreover, the methodology and the supporting scripts released with the testbed allow adaption to other areas where high-fidelity geolocated OpenDSS datasets are available. After describing the components and usage of the testbed, we exemplify applications enabled by the testbed via two scenarios modeling the extreme stresses encountered during evacuations. 
    more » « less
  5. We present a unique virtual testbed that combines a data-plane programmable network emulator and a power distribution system simulator to evaluate smart grid security and resilience applications. The testbed employs a virtual time system for effective simulation synchronization and fidelity enhancement. We showcase the advantages of the simulation testbed through an anomaly detection case study. 
    more » « less