skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: PyPWA: A software toolkit for parameter optimization and amplitude analysis
PyPWA is a toolkit designed to optimize parametric models describing data and generate simulated distributions according to a model. Its software has been written within the python ecosystem with the goal of performing Amplitude or Partial Wave Analysis (PWA) in nuclear and particle physics experiments. We briefly describe the general features of amplitude analysis and we provide a description of the PyPWA software design and usage. We also provide benchmarks of the scaling and an example of its application.  more » « less
Award ID(s):
2110797
PAR ID:
10528697
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Nucl.Instrum.Meth.A 1062 (2024) 169150
Date Published:
Journal Name:
Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
Volume:
1062
Issue:
C
ISSN:
0168-9002
Page Range / eLocation ID:
169150
Subject(s) / Keyword(s):
Amplitude analysis Optimization Python Hadron spectroscopy Data analysis Partial wave analysis
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This is the first of two articles on the Extant Life Volumetric Imaging System (ELVIS) describing a combined digital holographic microscope (DHM) and a fluorescence light-field microscope (FLFM). The instrument is modular and robust enough for field use. Each mode uses its own illumination source and camera, but both microscopes share a common objective lens and sample viewing chamber. This allows correlative volumetric imaging in amplitude, quantitative phase, and fluorescence modes. A detailed schematic and parts list is presented, as well as links to open-source software packages for data acquisition and analysis that permits interested researchers to duplicate the design. Instrument performance is quantified using test targets and beads. In the second article on ELVIS, to be published in the next issue of Microscopy Today , analysis of data from field tests and images of microorganisms will be presented. 
    more » « less
  2. We present a web-based software tool, the Virtual Quantum Optics Laboratory (VQOL), that may be used for designing and executing realistic simulations of quantum optics experiments. A graphical user interface allows one to rapidly build and configure a variety of different optical experiments, while the runtime environment provides unique capabilities for visualization and analysis. All standard linear optical components are available as well as sources of thermal, coherent, and entangled Gaussian states. A unique aspect of VQOL is the introduction of non-Gaussian measurements using detectors modeled as deterministic devices that "click" when the amplitude of the light falls above a given threshold. We describe the underlying theoretical models and provide some illustrative examples. We find that VQOL provides a faithful representation of many experimental quantum optics phenomena and may serve as both a useful instructional tool for students as well as a valuable research tool for practitioners. 
    more » « less
  3. null (Ed.)
    Recent work showed that two species of hammerhead sharks operated as a double oscillating system, where frequency and amplitude differed in the anterior and posterior parts of the body. We hypothesized that a double oscillating system would be present in a large, volitionally swimming, conventionally shaped carcharhinid shark. Swimming kinematics analyses provide quantification to mechanistically examine swimming within and among species. Here, we quantify blacktip shark (Carcharhinus limbatus) volitional swimming kinematics under natural conditions to assess variation between anterior and posterior body regions and demonstrate the presence of a double oscillating system. We captured footage of 80 individual blacktips swimming in the wild using a DJI Phantom 4 Pro aerial drone. The widespread accessibility of aerial drone technology has allowed for greater observation of wild marine megafauna. We used Loggerpro motion tracking software to track five anatomical landmarks frame by frame to calculate tailbeat frequency, tailbeat amplitude, speed, and anterior/posterior variables: amplitude and frequency of the head and tail, and the body curvature measured as anterior and posterior flexion. We found significant increases in tailbeat frequency and amplitude with increasing swimming speed. Tailbeat frequency decreased and tailbeat amplitude increased as posterior flexion amplitude increased. We found significant differences between anterior and posterior amplitudes and frequencies, suggesting a double oscillating modality of wave propagation. These data support previous work that hypothesized the importance of a double oscillating system for increased sensory perception. These methods demonstrate the utility of quantifying swimming kinematics of wild animals through direct observation, with the potential to apply a biomechanical perspective to movement ecology paradigms. 
    more » « less
  4. The security threats to mobile applications are growing explosively. Mobile apps flaws and security defects open doors for hackers to break in and access sensitive information. Defensive requirements analysis should be an integral part of secure mobile SDLC. Developers need to consider the information confidentiality and data integrity, to verify the security early in the development lifecycle rather than fixing the security holes after attacking and data leaks take place. Early eliminating known security vulnerabilities will help developers increase the security of apps and reduce the likelihood of exploitation. However, many software developers lack the necessary security knowledge and skills at the development stage, and that's why Secure Mobile Software Development education is very necessary for mobile software engineers. In this paper, we propose a guided security requirement analysis based on OWASP Mobile Top ten security risk recommendations for Android mobile software development and its traceability of the developmental controls in SDLC. Building secure apps immune to the OWASP Mobile Top ten risks would be an effective approach to provide very useful mobile security guidelines. 
    more » « less
  5. We released open-source software Hadoop-GIS in 2011, and presented and published the work in VLDB 2013. This work initiated the development of a new spatial data analytical ecosystem characterized by its large-scale capacity in both computing and data storage, high scalability, compatibility with low-cost commodity processors in clusters and open-source software. After more than a decade of research and development, this ecosystem has matured and is now serving many applications across various fields. In this paper, we provide the background on why we started this project and give an overview of the original Hadoop-GIS software architecture, along with its unique technical contributions and legacy. We present the evolution of the ecosystem and its current state-of-the- art, which has been influenced by the Hadoop-GIS project. We also describe the ongoing efforts to further enhance this ecosystem with hardware accelerations to meet the increasing demands for low latency and high throughput in various spatial data analysis tasks. Finally, we will summarize the insights gained and lessons learned over more than a decade in pursuing high-performance spatial data analytics. 
    more » « less