skip to main content


Title: Ab initio calculations of through-space and through-bond charge-transfer properties of interacting Janus-like PbSe and CdSe quantum dot heterostructures
Heterostructure quantum dots (QDs) are composed of two QD nanocrystals (NCs) conjoined at an interface. They are useful in applications such as photovoltaic solar cells. The properties of the interface between the NCs determine the efficiency of electron–hole recombination rates and charge transfer. Therefore, a fundamental understanding of how this interface works between the two materials is useful. To contribute to this understanding, we simulated two isolated heterostructure QD models with Janus-like geometry composed of Cd33Se33 + Pb68Se68 NCs. The first Janus-like model has a bond connection between the two NCs and is approximately 16 × 17 × 29 Å3 in size. The second model has a through-space connection between the NCs and is approximately 16 × 17 × 31 Å3. We use density functional theory to simulate the ground state properties of these models. Nonadiabatic on-the-fly couplings calculations were then used to construct the Redfield Tensor, which described the excited state dynamics due to nonradiative relaxation. From our results, we identified a qualitative trend which shows that having a bond connecting the two NCs reduces hole relaxation time. We also identified for a sample of electron–hole excitations pairs that the through-bond model allows for a net positive or negative numerical net charge transfer, depending on the excitation pair.  more » « less
Award ID(s):
1944921 2004197
PAR ID:
10528769
Author(s) / Creator(s):
; ;
Publisher / Repository:
Taylor and Francis
Date Published:
Journal Name:
Molecular Physics
ISSN:
0026-8976
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Hybrid graphene and quantum dots (QDs) photodetectors merge the excellent conductivity and ambipolar electric field sensitivity of graphene, with the unique properties of QDs. The photoresponsivity of these devices depends strongly on the charge transfer at the graphene/QDs interface. Here 1‐pyrene butyric acid (PBA)‐coated PbS QDs with single layer graphene (SLG) are used to investigate the effect of pyrene as a π–π mediator to enhance charge transfer at the SLG/QDs junction under illumination. The surface chemistry at the QD–QD and SLG/QD interface is studied with the conventional tetrabutylammonium iodide (TBAI) QD linker. The hybrid SLG/QD photodetectors with PBA as a SLG‐QD linker demonstrate a photoresponse up to 30% higher than that recorded for devices where only TBAI is used, due to the strong electron coupling between SLG and QDs. Transconductance measurements show that PBA provokes electron depletion in SLG ascribed to the tendency to delocalize the QDs holes, favoring their transfer to SLG. This surface ligand is found to improve the interaction between the QDs light absorbers and the SLG charge collector, leading to an increased photodetection response. This demonstrates that ligand engineering can enhance charge dynamics and boost the performance of the hybrid device.

     
    more » « less
  2. null (Ed.)
    Intramolecular charge transfer and the associated changes in molecular structure in N,N′-dimethylpiperazine are tracked using femtosecond gas-phase X-ray scattering. The molecules are optically excited to the 3p state at 200 nm. Following rapid relaxation to the 3s state, distinct charge-localized and charge-delocalized species related by charge transfer are observed. The experiment determines the molecular structure of the two species, with the redistribution of electron density accounted for by a scattering correction factor. The initially dominant charge-localized state has a weakened carbon–carbon bond and reorients one methyl group compared with the ground state. Subsequent charge transfer to the charge-delocalized state elongates the carbon–carbon bond further, creating an extended 1.634 Å bond, and also reorients the second methyl group. At the same time, the bond lengths between the nitrogen and the ring-carbon atoms contract from an average of 1.505 to 1.465 Å. The experiment determines the overall charge transfer time constant for approaching the equilibrium between charge-localized and charge-delocalized species to 3.0 ps. 
    more » « less
  3. We fabricated a van der Waals heterostructure of WS 2 –ReSe 2 and studied its charge-transfer properties. Monolayers of WS 2 and ReSe 2 were obtained by mechanical exfoliation and chemical vapor deposition, respectively. The heterostructure sample was fabricated by transferring the WS 2 monolayer on top of ReSe 2 by a dry transfer process. Photoluminescence quenching was observed in the heterostructure, indicating efficient interlayer charge transfer. Transient absorption measurements show that holes can efficiently transfer from WS 2 to ReSe 2 on an ultrafast timescale. Meanwhile, electron transfer from ReSe 2 to WS 2 was also observed. The charge-transfer properties show that monolayers of ReSe 2 and WS 2 form a type-II band alignment, instead of type-I as predicted by theory. The type-II alignment is further confirmed by the observation of extended photocarrier lifetimes in the heterostructure. These results provide useful information for developing van der Waals heterostructure involving ReSe 2 for novel electronic and optoelectronic applications and introduce ReSe 2 to the family of two-dimensional materials to construct van der Waals heterostructures. 
    more » « less
  4. Plasmonic nanostructures have been demonstrated as emergent photocatalysts because of their efficient photon absorption and their ability to produce hot carriers. However, the plasmon-generated hot carriers decay through ultrafast relaxation pathways, resulting in a short lifetime that impedes the exploitation of hot carriers for chemical reactions. Charge separation at the heterojunction of the hybrid nanostructures can counteract the ultrafast decay to extend the carrier lifetime. Here, we fabricate hybrid nanostructures composed of gold nanorods and a carbon thin film and demonstrate efficient charge transfer between these two materials. Using single-particle dark-field scattering spectroscopy, we observe a broadening of the longitudinal plasmon for gold nanorods on a carbon film compared to those on a glass substrate. We attribute this plasmon damping to the electron transfer from gold nanorods to the carbon film and exclude the contribution from plasmon-induced resonance energy transfer. The electron transfer efficiencies are calculated as 52.8 ± 4.8 and 57.4 ± 4.0% for carbon films with thicknesses of 10 and 25 nm, respectively. This work demonstrates efficient charge separation at the gold–carbon film interface, which can extend the lifetime of hot carriers to promote plasmonic photocatalysts. 
    more » « less
  5. Abstract

    Two-dimensional electron gas or hole gas (2DEG or 2DHG) and their functionalities at artificial heterostructure interfaces have attracted extensive attention in recent years. Many theoretical calculations and recent experimental studies have shown the formation of alternating 2DEG and 2DHG at ferroelectric/insulator interfaces, such as BiFeO3/TbScO3, depending on the different polarization states. However, a direct observation based on the local charge distribution at the BiFeO3/TbScO3interface has yet to be explored. Herein we demonstrate the direct observation of 2DHG and 2DEG at BiFeO3/TbScO3interface using four-dimensional scanning transmission electron microscopy and Bader charge analysis. The results show that the measured charge state of each Fe/O columns at the interface undergoes a significant increase/reduction for the polarization state pointing away/toward the interface, indicating the existence of 2DHG/2DEG. This method opens up a path of directly observing charge at atomic scale and provides new insights into the design of future electronic nanodevices.

     
    more » « less