skip to main content


This content will become publicly available on March 1, 2025

Title: Assessment of the Nonlinear Electrophoretic Migration of Nanoparticles and Bacteriophages

Bacteriophage therapy presents a promising avenue for combating antibiotic-resistant bacterial infections. Yet, challenges exist, particularly, the lack of a straightforward purification pipeline suitable for widespread application to many phage types, as some phages are known to undergo significant titer loss when purified via current techniques. Electrokinetic methods offer a potential solution to this hurdle, with nonlinear electrophoresis emerging as a particularly appealing approach due to its ability to discern both the size and shape of the target phage particles. Presented herein is the electrokinetic characterization of the mobility of nonlinear electrophoresis for two phages (SPN3US and ϕKZ) and three types of polystyrene nanoparticles. The latter served as controls and were selected based on their sizes and surface charge magnitude. Particle tracking velocimetry experiments were conducted to characterize the mobility of all five particles included in this study. The results indicated that the selected nanoparticles effectively replicate the migration behavior of the two phages under electric fields. Further, it was found that there is a significant difference in the nonlinear electrophoretic response of phages and that of host cells, as first characterized in a previous report, illustrating that electrokinetic-based separations are feasible. The findings from this work are the first characterization of the behavior of phages under nonlinear electrophoresis effects and illustrate the potential for the development of electrokinetic-based phage purification techniques that could aid the advancement of bacteriophage therapy.

 
more » « less
Award ID(s):
2133207
PAR ID:
10528781
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Multidisciplinary Digital Publishing Institute
Date Published:
Journal Name:
Micromachines
Volume:
15
Issue:
3
ISSN:
2072-666X
Page Range / eLocation ID:
369
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Phages used for phage therapy of multidrug resistant bacteria must be highly purified prior to use. There are limited purification approaches that are broadly applicable to many phage types. Electrokinetics has shown great potential to manipulate phages, but obstructions from the cell debris produced during phage propagation can severely diminish the capacity of an electrokinetic device to concentrate and purify phage samples. A multipart insulator‐based electrokinetic device is proposed here to remove the larger, undesirable components of mixtures from phage preparations while transferring the freshly purified and concentrated sample to a second stage for downstream analysis. By combining the large debris prescreen and analysis stages in a streamlined system, this approach simultaneously reduces the impact of clogging and minimizes the sample loss observed during manual transferring of purified samples. Polystyrene particles were used to demonstrate a diminished sample loss of approximately one order of magnitude when using the cascade device as opposed to a manual transfer scheme. The purification and concentration of three different phage samples were demonstrated using the first stage of the cascade device as a prescreen. This design provides a simple method of purifying and concentrating valuable samples from a complex mixture that might impede separation capacity in a single channel.

     
    more » « less
  2. Bacterial viruses or phages have great potential in the medical and agricultural fields as alternatives to antibiotics to control nuisance populations of pathogenic bacteria. However, current analysis and purification protocols for phages tend to be resource intensive and have numbers of limitations, such as impacting phage viability. The present study explores the potential of employing the electrokinetic technique of insulator-based dielectrophoresis (iDEP) for virus assessment, separation and enrichment. In particular, the application of the parameter “trapping value” (Tv) is explored as a standardized iDEP signature for each phage species. The present study includes mathematical modeling with COMSOL Multiphysics and extensive experimentation. Three related, but genetically and structurally distinct, phages were studied: Salmonella enterica phage SPN3US, Pseudomonas aeruginosa phage ϕKZ and P. chlororaphis phage 201ϕ2-1. This is the first iDEP study on bacteriophages with large and complex virions and the results illustrate their virions can be successfully enriched with iDEP systems and still retain infectivity. In addition, our results indicate that characterization of the negative dielectrophoretic response of a phage in terms of Tv could be used for predicting individual virus behavior in iDEP systems. The findings reported here can contribute to the establishment of protocols to analyze, purify and/or enrich samples of known and unknown phages. 
    more » « less
  3. Nonlinear electrokinetic phenomena offer label-free, portable, and robust approaches for particle and cell assessment, including selective enrichment, separation, sorting, and characterization. The field of electrokinetics has evolved substantially since the first separation reports by Arne Tiselius in the 1930s. The last century witnessed major advances in the understanding of the weak-field theory, which supported developments in the use of linear electrophoresis and its adoption as a routine analytical technique. More recently, an improved understanding of the strong-field theory enabled the development of nonlinear electrokinetic techniques such as electrorotation, dielectrophoresis, and nonlinear electrophoresis. This review discusses the operating principles and recent applications of these three nonlinear electrokinetic phenomena for the analysis and manipulation of particles and cells and provides an overview of some of the latest developments in the field of nonlinear electrokinetics.

     
    more » « less
  4. Imperiale, Michael J. (Ed.)
    ABSTRACT The effort to discover novel phages infecting Staphylococcus epidermidis contributes to both the development of phage therapy and the expansion of genome-based phage phylogeny. Here, we report the genome of an S. epidermidis -infecting phage, Lacachita, and compare its genome with those of five other phages with high sequence identity. These phages represent a novel siphovirus genus, which was recently reported in the literature. The published member of this group was favorably evaluated as a phage therapeutic agent, but Lacachita is capable of transducing antibiotic resistance and conferring phage resistance to transduced cells. Members of this genus may be maintained within their host as extrachromosomal plasmid prophages, through stable lysogeny or pseudolysogeny. Therefore, we conclude that Lacachita may be temperate and members of this novel genus are not suitable for phage therapy. IMPORTANCE This project describes the discovery of a culturable bacteriophage infecting Staphylococcus epidermidis that is a member of a rapidly growing novel siphovirus genus. A member of this genus was recently characterized and proposed for phage therapy, as there are few phages currently available to treat S. epidermidis infections. Our data contradict this, as we show Lacachita is capable of moving DNA from one bacterium to another, and it may be capable of maintaining itself in a plasmid-like state in infected cells. These phages’ putative plasmid-like extrachromosomal state appears to be due to a simplified maintenance mechanism found in true plasmids of Staphylococcus and related hosts. We suggest Lacachita and other identified members of this novel genus are not suitable for phage therapy. 
    more » « less
  5. Analyte migration order is a major aspect in all migration-based analytical separations methods. Presented here is the manipulation of the migration order of microparticles in an insulator-based electrokinetic separation. Three distinct particle mixtures were studied: a binary mixture of particles with similar electrical charge and different sizes, and two tertiary mixtures of particles of distinct sizes. Each one of the particle mixtures was separated twice, the first separation was performed under low voltage (linear electrokinetic regime) and the second separation was performed under high voltage (nonlinear electrokinetic regime). Linear electrophoresis, which discriminates particles by charge, is the dominant electrokinetic effect in the linear regime; while nonlinear electrophoresis, which discriminates particles by size and shape, is the dominant electrokinetic effect in the nonlinear regime. The separation results obtained with the three particle mixtures illustrated that particle elution order can be changed by switching from the linear electrokinetic regime to the nonlinear electrokinetic regime. Also, in all cases, better separation performances in terms of separation resolution (Rs) were obtained by employing the nonlinear electrokinetic regime allowing nonlinear electrophoresis to be the discriminatory electrokinetic mechanism. These findings could be applied to analyze complex samples containing bioparticles of interest within the micron size range. This is the first report where particle elution order is altered in an iEK system.

     
    more » « less