skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Loss and Decoherence at the Quantum Hall-Superconductor Interface
We perform a systematic study of Andreev conversion at the interface between a superconductor and graphene in the quantum Hall (QH) regime. We find that the probability of Andreev conversion from electrons to holes follows an unexpected but clear trend: the dependencies on temperature and magnetic field are nearly decoupled. We discuss these trends and the role of the superconducting vortices, whose normal cores could both absorb and dephase the individual electrons in a QH edge. Our study may pave the road to engineering future generation of hybrid devices for exploiting superconductivity proximity in chiral channels.  more » « less
Award ID(s):
2004870
PAR ID:
10528898
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
American Physical Society
Date Published:
Journal Name:
Physical Review Letters
Volume:
131
Issue:
17
ISSN:
0031-9007
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper comprises a review of our recent works on fractional chiral modes that emerge due to edge reconstruction in integer and fractional quantum Hall (QH) phases. The new part added is an analysis of edge reconstruction of the ν = 2/5 phase. QH states are topological phases of matter featuring chiral gapless modes at the edge. These edge modes may propagate downstream or upstream and may support either charge or charge-neutral excitations. From topological considerations, particle-like QH states are expected to support only downstream charge modes. However the interplay between the electronic repulsion and the boundary confining potential may drive certain quantum phase transitions (called reconstructions) at the edge, which are associated to the nucleation of additional pairs of counter-propagating modes. Employing variational methods, here we study edge reconstruction in the prototypical particle-like phases at ν = 1, 1/3, and 2/5 as a function of the slope of the confining potential. Our analysis shows that subsequent renormalization of the edge modes, driven by disorder-induced tunnelling and intermode interactions, may lead to the emergence of upstream neutral modes. These predictions may be tested in suitably designed transport experiments. Our results are also consistent with previous observations of upstream neutral modes in these QH phases and could explain the absence of anyonic interference in electronic Mach-Zehnder setups. 
    more » « less
  2. The search for topological excitations such as Majorana fermions has spurred interest in the boundaries between distinct quan- tum states. Here, we explore an interface between two prototypical phases of electrons with conceptually different ground states: the integer quantum Hall insulator and the s-wave superconductor. We find clear signatures of hybridized electron and hole states similar to chiral Majorana fermions, which we refer to as chiral Andreev edge states (CAESs). These propagate along the interface in the direction determined by the magnetic field and their interference can turn an incoming electron into an out- going electron or hole, depending on the phase accumulated by the CAESs along their path. Our results demonstrate that these excitations can propagate and interfere over a significant length, opening future possibilities for their coherent manipulation. 
    more » « less
  3. Abstract Strongly interacting fermionic systems host a variety of interesting quantum many-body states with exotic excitations. For instance, the interplay of strong interactions and the Pauli exclusion principle can lead to Stoner ferromagnetism, but the fate of this state remains unclear when kinetic terms are added. While in many lattice models the fermions’ dispersion results in delocalization and destabilization of the ferromagnet, flat bands can restore strong interaction effects and ferromagnetic correlations. To reveal this interplay, here we propose to study the Hofstadter–Fermi–Hubbard model using ultracold atoms. We demonstrate, by performing large-scale density-matrix renormalization group simulations, that this model exhibits a lattice analog of the quantum Hall (QH) ferromagnet at magnetic filling factor ν  = 1. We reveal the nature of the low energy spin-singlet states around ν  ≈ 1 and find that they host quasi-particles and quasi-holes exhibiting spin-spin correlations reminiscent of skyrmions. Finally, we predict the breakdown of flat-band ferromagnetism at large fields. Our work paves the way towards experimental studies of lattice QH ferromagnetism, including prospects to study many-body states of interacting skyrmions and explore the relation to high- T c superconductivity. 
    more » « less
  4. When an electron is incident on a superconductor from a metal, it is reflected as a hole in a process called Andreev reflection. If the metal N is sandwiched between two superconductors S in an SNS junction, multiple Andreev reflections (MARs) occur. We have found that, in SNS junctions with high transparency ( τ   →   1 ) based on the Dirac semimetal MoTe 2 , the MAR features are observed with exceptional resolution. By tuning the phase difference φ between the bracketing Al superconductors, we establish that the MARs coexist with a Josephson supercurrent I s = I A   sin φ . As we vary the junction voltage V , the supercurrent amplitude I A varies in step with the MAR order n , revealing a direct relation between them. Two successive Andreev reflections serve to shuttle a Cooper pair across the junction. If the pair is shuttled coherently, it contributes to I s . The experiment measures the fraction of pairs shuttled coherently vs. V . Surprisingly, superconductivity in MoTe 2 does not affect the MAR features. 
    more » « less
  5. Although nodal spin-triplet topological superconductivity appears probable in uranium ditelluride (UTe2), its superconductive order parameter Δkremains unestablished. In theory, a distinctive identifier would be the existence of a superconductive topological surface band, which could facilitate zero-energy Andreev tunneling to an s-wave superconductor and also distinguish a chiral from a nonchiral Δkthrough enhanced s-wave proximity. In this study, we used s-wave superconductive scan tips and detected intense zero-energy Andreev conductance at the UTe2(0-11) termination surface. Imaging revealed subgap quasiparticle scattering interference signatures witha-axis orientation. The observed zero-energy Andreev peak splitting with enhanced s-wave proximity signifies that Δkof UTe2is a nonchiral state:B1u,B2u, orB3u. However, if the quasiparticle scattering along theaaxis is internodal, then a nonchiralB3ustate is the most consistent for UTe2
    more » « less