skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on May 29, 2026

Title: Pair wave function symmetry in UTe 2 from zero-energy surface state visualization
Although nodal spin-triplet topological superconductivity appears probable in uranium ditelluride (UTe2), its superconductive order parameter Δkremains unestablished. In theory, a distinctive identifier would be the existence of a superconductive topological surface band, which could facilitate zero-energy Andreev tunneling to an s-wave superconductor and also distinguish a chiral from a nonchiral Δkthrough enhanced s-wave proximity. In this study, we used s-wave superconductive scan tips and detected intense zero-energy Andreev conductance at the UTe2(0-11) termination surface. Imaging revealed subgap quasiparticle scattering interference signatures witha-axis orientation. The observed zero-energy Andreev peak splitting with enhanced s-wave proximity signifies that Δkof UTe2is a nonchiral state:B1u,B2u, orB3u. However, if the quasiparticle scattering along theaaxis is internodal, then a nonchiralB3ustate is the most consistent for UTe2 more » « less
Award ID(s):
2201516
PAR ID:
10600014
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Science
Date Published:
Journal Name:
Science
Volume:
388
Issue:
6750
ISSN:
0036-8075
Page Range / eLocation ID:
938 to 944
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Symmetry properties of the order parameter are among the most fundamental characteristics of a superconductor. UTe2, which was found to feature an exceedingly large upper critical field and striking reentrant behavior at low temperatures, is widely believed to possess a spin-triplet pairing symmetry. However, unambiguous evidence for such a pairing symmetry is still lacking, especially at zero and low magnetic fields. The presence of an inversion crystalline symmetry in UTe2requires that, if it is indeed a spin-triplet superconductor, the order parameter must be of odd parity. We report here phase-sensitive measurements of the symmetry of the orbital part of the order parameter using the Josephson effect. The selection rule in the orientation dependence of the Josephson coupling between In, ans-wave superconductor, and UTe2suggests strongly that UTe2possesses the odd-parity pairing state of B1usymmetry near zero magnetic field, making it a spin-triplet superconductor. We also report the apparent formation of Andreev surface bound states on the (1−10) surface of UTe2
    more » « less
  2. We describe the confining instabilities of a proposed quantum spin liquid underlying the pseudogap metal state of the hole-doped cuprates. The spin liquid can be described by a SU(2) gauge theory ofNf= 2 massless Dirac fermions carrying fundamental gauge charges—this is the low-energy theory of a mean-field state of fermionic spinons moving on the square lattice withπ-flux per plaquette in the ℤ2center of SU(2). This theory has an emergent SO(5)fglobal symmetry and is presumed to confine at low energies to the Néel state. At nonzero doping (or smaller Hubbard repulsionUat half-filling), we argue that confinement occurs via the Higgs condensation of bosonic chargons carrying fundamental SU(2) gauge charges also moving inπℤ2-flux. At half-filling, the low-energy theory of the Higgs sector hasNb= 2 relativistic bosons with a possible emergent SO(5)bglobal symmetry describing rotations between ad-wave superconductor, period-2 charge stripes, and the time-reversal breaking “d-density wave” state. We propose a conformal SU(2) gauge theory withNf= 2 fundamental fermions,Nb= 2 fundamental bosons, and a SO(5)f×SO(5)bglobal symmetry, which describes a deconfined quantum critical point between a confining state which breaks SO(5)fand a confining state which breaks SO(5)b. The pattern of symmetry breaking within both SO(5)s is determined by terms likely irrelevant at the critical point, which can be chosen to obtain a transition between Néel order andd-wave superconductivity. A similar theory applies at nonzero doping and largeU, with longer-range couplings of the chargons leading to charge order with longer periods. 
    more » « less
  3. Abstract The detailed anisotropic dispersion of the low-temperature, low-energy magnetic excitations of the candidate spin-triplet superconductor UTe2is revealed using inelastic neutron scattering. The magnetic excitations emerge from the Brillouin zone boundary at the high symmetryYandTpoints and disperse along the crystallographic$$\hat{b}$$ b ̂ -axis. In applied magnetic fields to at leastμ0H= 11 T along the$$\hat{c}-{\rm{axis}}$$ c ̂ axis , the magnetism is found to be field-independent in the (hk0) plane. The scattering intensity is consistent with that expected from U3+/U4+ f-electron spins with preferential orientation along the crystallographic$$\hat{a}$$ a ̂ -axis, and a fluctuating magnetic moment ofμeff=1.7(5)μB. We propose interband spin excitons arising fromf-electron hybridization as a possible origin of the magnetic excitations in UTe2
    more » « less
  4. Removing CO2from the atmosphere is emerging as a viable strategy to mitigate global warming, yet the responses of the climate system to CO2reduction remain uncertain. One of the most uncertain aspects of El Niño behavior is the change in periodicity in response to CO2forcing [O. Alizadeh,Earth-Sci. Rev.235, 104246 (2022)]. In this study, we show that climate models consistently project an abrupt shortening of El Niño periodicity once CO2reductions commence in ramp-up and ramp-down CO2experiments. Besides the contribution of slow mean state changes, this phenomenon is shown to be driven by a southward shift of the Intertropical Convergence Zone (ITCZ) [J.-S. Kug,et al.,Nat. Clim. Chang.12, 47–53 (2022)] and the consequent narrowing of El Niño’s spatial pattern, which enhances the effectiveness of ocean heat recharge/discharge processes, thereby shortening its periodicity. This suggests that the abrupt shift in El Niño periodicity results from a cascading reaction involving ITCZ dynamics and El Niño’s spatial configuration. These findings highlight the critical role of the global energy balance in shaping El Niño characteristics. 
    more » « less
  5. Abstract We conduct 3D magnetohydrodynamic simulations of decaying turbulence in the context of the solar wind. To account for the spherical expansion of the solar wind, we implement the expanding box model. The initial turbulence comprises uncorrelated counterpropagating Alfvén waves and exhibits an isotropic power spectrum. Our findings reveal the consistent generation of negative residual energy whenever nonlinear interactions are present, independent of the normalized cross helicityσcand compressibility. The spherical expansion facilitates this process. The resulting residual energy is primarily distributed in the perpendicular direction, withS2(b) − S2(u) ∝ lor equivalently E r k 2 . HereS2(b) andS2(u) are second-order structure functions of magnetic field and velocity respectively. In most runs,S2(b) develops a scaling relation S 2 ( b ) l 1 / 2 ( E b k 3 / 2 ). In contrast,S2(u) is consistently shallower thanS2(b), which aligns with in situ observations of the solar wind. We observe that the higher-order statistics of the turbulence, which act as a proxy for intermittency, depend on the initialσcand are strongly affected by the expansion effect. Generally, the intermittency is more pronounced when the expansion effect is present. Finally, we find that in our simulations, although the negative residual energy and intermittency grow simultaneously as the turbulence evolves, the causal relation between them seems to be weak, possibly because they are generated on different scales. 
    more » « less