skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Atomic layer self-transducing MoS2 vibrating channel transistors with 0.5 pm/Hz1/2 displacement sensitivity at room temperature
We report on the experimental demonstration of high-performance suspended channel transistors with single- and bilayer (1L and 2L) molybdenum disulfide (MoS2), and on operating them as vibrating channel transistors (VCTs) and exploiting their built-in dynamic electromechanical coupling to read out picoampere (pA) transconduction current directly at the vibrating tones, without frequency conversion or down-mixing, for picometer (pm)-scale motion detection at room temperature. The 1L- and 2L-MoS2 VCTs exhibit excellent n-type transistor behavior with high mobility [150 cm2/(V·s)] and small subthreshold swing (98 mV/dec). Their resonance motions are probed by directly measuring the small-signal drain-source currents (iD). Electromechanical characteristics of the devices are extracted from the measured iD, yielding resonances at f0 = 31.83 MHz with quality factor Q = 117 and f0 = 21.43 MHz with Q = 110 for 1L- and 2L-MoS2 VCTs, respectively. The 2L-MoS2 VCT demonstrates excellent current and displacement sensitivity (Si1/2 = 2 pA/Hz1/2 and Sx1/2 = 0.5 pm/Hz1/2). We demonstrate f0 tuning by controlling gate voltage VG and achieve frequency tunability Δf0/f0 ≈ 8% and resonance frequency change Δf0/ΔVG ≈ 0.53 kHz/mV. This study helps pave the way to realizing ultrasensitive self-transducing 2D nanoelectromechanical systems at room temperature, in all-electronic configurations, for on-chip applications.  more » « less
Award ID(s):
2221881
PAR ID:
10528921
Author(s) / Creator(s):
;
Publisher / Repository:
AIP Publishing
Date Published:
Journal Name:
Applied Physics Letters
Volume:
124
Issue:
5
ISSN:
0003-6951
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Strong interactions between excitons are a characteristic feature of two-dimensional (2D) semiconductors, determining important excitonic properties, such as exciton lifetime, coherence, and photon-emission efficiency. Rhenium disulfide (ReS2), a member of the 2D transition-metal dichalcogenide (TMD) family, has recently attracted great attention due to its unique excitons that exhibit excellent polarization selectivity and coherence features. However, an in-depth understanding of exciton-exciton interactions in ReS2 is still lacking. Here we used ultrafast pump-probe spectroscopy to study exciton-exciton interactions in monolayer (1L), bilayer (2L), and triple layer ReS2. We directly measure the rate of exciton-exciton annihilation, a representative Auger-type interaction between excitons. It decreases with increasing layer number, as observed in other 2D TMDs. However, while other TMDs exhibit a sharp weakening of exciton-exciton annihilation between 1L and 2L, such behavior was not observed in ReS2. We attribute this distinct feature in ReS2 to the relatively weak interlayer coupling, which prohibits a substantial change in the electronic structure when the thickness varies. This work not only highlights the unique excitonic properties of ReS2 but also provides novel insight into the thickness dependence of exciton-exciton interactions in 2D systems. 
    more » « less
  2. We report on the experimental demonstration of aluminum scandium nitride (AlScN)-on-cubic silicon carbide (3C-SiC) Lamb wave resonators (LWRs) realized via microelectromechanical systems (MEMS) technology, operating at high temperature (T) up to T = 800 °C, while retaining robust electromechanical resonances at ∼27 MHz and good quality factor of Q ≈ 900 even at 800 °C. Measured resonances exhibit clear consistency and stability during heating and cooling processes, validating the AlScN-on-SiC LWRs can operate at high T up to 800 °C without noticeable degradation in moderate vacuum (∼20 mTorr). Even after undergoing four complete thermal cycles (heating from 23 to 800 °C and then cooling down to 23 °C), the devices exhibit robust resonance behavior, suggesting excellent stability and suitability for high-temperature applications. Q starts to decline as the temperature exceeds 400 °C, which can be attributed to energy dissipation mechanisms stemming from thermoelastic damping and intrinsic material loss originating from phonon–phonon interactions. 
    more » « less
  3. Two-dimensional (2D) molybdenum disulfide (MoS2) holds immense promise for next-generation electronic applications. However, the role of contact deposition at the metal/semiconductor interface remains a critical factor influencing device performance. This study investigates the impact of different metal deposition techniques, specifically electron-beam evaporation and sputtering, for depositing Cu, Pd, Bi, Sn, Pt, and In. Utilizing Raman spectroscopy with backside illumination, we observe changes at the buried metal/1L MoS2 interface after metal deposition. Sputter deposition causes more damage to monolayer MoS2 than electron-beam evaporation, as indicated by partial or complete disappearance of first-order E′(Γ)α and A′1(Γ)α Raman modes post-deposition. We correlated the degree of damage from sputtered atoms to the cohesive energies of the sputtered material. Through fabrication and testing of field-effect transistors, we demonstrate that electron-beam evaporated Sn/Au contacts exhibit superior performance including reduced contact resistance (~12×), enhanced mobility (~4.3×), and lower subthreshold slope (~0.6×) compared to their sputtered counterparts. Our findings underscore the importance of contact fabrication methods for optimizing the performance of 2D MoS2 devices and the value of Raman spectroscopy with backside illumination for gaining insight into contact performance. 
    more » « less
  4. Pumping is an essential component in many microfluidic applications. Developing simple, small-footprint, and flexible pumping methods is of great importance to achieve truly lab-on-a-chip systems. Here, we report a novel acoustic pump based on the atomization effect induced by a vibrating sharp-tip capillary. As the liquid is atomized by the vibrating capillary, negative pressure is generated to drive the movement of fluid without the need to fabricate special microstructures or use special channel materials. We studied the influence of the frequency, input power, internal diameter (ID) of the capillary tip, and liquid viscosity on the pumping flow rate. By adjusting the ID of the capillary from 30 µm to 80 µm and the power input from 1 Vpp to 5 Vpp, a flow rate range of 3 to 520 µL/min can be achieved. We also demonstrated the simultaneous operation of two pumps to generate parallel flow with a tunable flow rate ratio. Finally, the capability of performing complex pumping sequences was demonstrated by performing a bead-based ELISA in a 3D-printed microdevice. 
    more » « less
  5. We report a new physics-based model for dual-gate amorphous-indium gallium zinc oxide (a-IGZO) thin film transistors (TFTs) which we developed and fine-tuned through experimental implementation and benchtop characterization.We fabricated and characterized a variety of test patterns, including a-IGZO TFTs with varying gate widths (100–1000 μm) and channel lengths (5–50 μm), transmission-line-measurement patterns and ground–signal–ground (GSG) radio frequency (RF) patterns. We modeled the contact resistance as a function of bias, channel area, and temperature, and captured all operating regimes, used physics-based modeling adjusted for empirical data to capture the TFT characteristics including ambipolar subthreshold currents, graded interbias-regime current changes, threshold and flat-band voltages, the interface trap density, the gate leakage currents, the noise, and the relevant small signal parameters. To design high-precision circuits for biosensing, we validated the dc, small signal, and noise characteristics of the model. We simulated and fabricated a two-stage common source amplifier circuit with a common drain output buffer and compared the measured and simulated gain and phase performance, finding an excellent fit over a frequency range spanning 10 kHz–10 MHz. 
    more » « less