skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 1, 2026

Title: Seasonal regimes of warm Circumpolar Deep Water intrusion toward Antarctic ice shelves
Abstract Basal melting of Antarctic ice shelves is primarily driven by heat delivery from warm Circumpolar Deep Water. Here we classify near-shelf water masses in an eddy-resolving numerical model of the Southern Ocean to develop a unified view of warm water intrusion onto the Antarctic continental shelf. We identify four regimes on seasonal timescales. In regime 1 (East Antarctica), heat intrusions are driven by easterly winds via Ekman dynamics. In regime 2 (West Antarctica), intrusion is primarily determined by the strength of a shelf-break undercurrent. In regime 3, the warm water cycle on the shelf is in antiphase with dense shelf water production (Adélie Coast). Finally, in regime 4 (Weddell and Ross seas), shelf-ward warm water inflow occurs along the western edge of canyons during periods of dense shelf water outflow. Our results advocate for a reformulation of the traditional annual-mean regime classification of the Antarctic continental shelf.  more » « less
Award ID(s):
1936222 2332379
PAR ID:
10613925
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Springer Nature
Date Published:
Journal Name:
Communications Earth & Environment
Volume:
6
Issue:
1
ISSN:
2662-4435
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract This study examines the link between near-bottom outflows of dense water formed in Antarctic coastal polynyas and onshore intrusions of Circumpolar Deep Water (CDW) through prograde troughs cutting across the continental shelf. Numerical simulations show that the dense water outflow is primarily in the form of cyclonic eddies. The trough serves as a topographic guide that organizes the offshore-moving dense water eddies into a chain pattern. The offshore migration speed of the dense water eddies is similar to the velocity of the dense water offshore flow in the trough, which scaling analysis finds to be proportional to the reduced gravity of the dense water and the slope of the trough sidewalls and to be inversely proportional to the Coriolis parameter. Our model simulations indicate that, as these cyclonic dense water eddies move across the trough mouth into the deep ocean, they entrain CDW from offshore and carry CDW clockwise along their periphery into the trough. Subsequent cyclonic dense water eddies then entrain the intruding CDW further toward the coast along the trough. This process of recurring onshore entrainment of CDW by a topographically constrained chain of offshore-flowing dense water eddies is consistent with topographic hotspots of onshore intrusion of CDW around Antarctica identified by other studies. It can bring CDW from offshore to close to the coast and thus impact the heat flux into Antarctic coastal regions, affecting interactions among ocean, sea ice, and ice shelves. Significance StatementTroughs cutting across the Antarctic continental shelf are a major conduit for the transport of dense shelf water from coastal formation regions to the shelf break. This study describes a process in which clockwise-spinning eddies moving offshore in prograde troughs successively entrain filaments of relatively warm Circumpolar Deep Water from offshore across the entire shelf and into the coastal region. This eddy-induced transport provides a new understanding of the shelf edge exchange process identified in previous studies and a mechanism for further onshore intrusion of the warm Circumpolar Deep Water over parts of the Antarctic shelf. The resultant onshore heat flux could potentially bring a substantial amount of heat from offshore into the coastal region and thus affect ice–ocean interactions through melting sea ice and ice shelves. 
    more » « less
  2. Abstract Antarctic ice shelves are losing mass at drastically different rates, primarily due to differing rates of oceanic heat supply to their bases. However, a generalized theory for the inflow of relatively warm water into ice shelf cavities is lacking. This study proposes such a theory based on a geostrophically constrained inflow, combined with a threshold bathymetric elevation, the Highest Unconnected isoBath (HUB), that obstructs warm water access to ice shelf grounding lines. This theory captures ∼ 90% of the variance in melt rates across a suite of idealized process‐oriented ocean/ice shelf simulations with quasi‐randomized geometries. Applied to observations of ice shelf geometries and offshore hydrography, the theory captures ∼80% of the variance in measured ice shelf melt rates. These findings provide a generalized theoretical framework for melt resulting from buoyancy‐driven warm water access to geometrically complex Antarctic ice shelf cavities. 
    more » « less
  3. Abstract We analyze 15‐year of observational data and a 5‐year Southern Ocean model simulation to quantify the transformation rates of Circumpolar Deep Water (CDW) and the associated heat loss to the surface. This study finds that over the continental shelves of East Antarctica and the Weddell and Ross Seas, surface buoyancy fluxes transform ∼4.4 Sv of surface waters into CDW, providing a path for CDW to lose heat to the surface. In addition, ∼6.6 Sv of CDW are mixed with surface waters in the Weddell and Ross subpolar gyres. In contrast, enhanced stratification inhibits the outcropping of CDW isopycnals, reducing their transformation rates by a factor of ∼8 over the continental shelf and by a factor of ∼3 over the deeper ocean in the Amundsen and Bellingshausen Seas. The CDW retains its offshore warm properties as it intrudes over the continental shelves, resulting in elevated bottom temperatures there. This analysis demonstrates the importance of processes in subpolar gyres to erode CDW and to facilitate further transformation on the continental shelves, significantly reducing the heat able to access ice shelf fronts. This sheltering effect is strongest in the western Weddell Sea and tends to diminish toward the east, which helps explain the large zonal differences in continental‐shelf bottom temperatures and the melt rates of Antarctic ice shelves. 
    more » « less
  4. Abstract The Totten Glacier in East Antarctica, with an ice volume equivalent to >3.5 m of global sea-level rise, is grounded below sea level and, therefore, vulnerable to ocean forcing. Here, we use bathymetric and oceanographic observations from previously unsampled parts of the Totten continental shelf to reveal on-shelf warm water pathways defined by deep topographic features. Access of warm water to the Totten Ice Shelf (TIS) cavity is facilitated by a deep shelf break, a broad and deep depression on the shelf, a cyclonic circulation that carries warm water to the inner shelf, and deep troughs that provide direct access to the TIS cavity. The temperature of the warmest water reaching the TIS cavity varies by ~0.8 °C on an interannual timescale. Numerical simulations constrained by the updated bathymetry demonstrate that the deep troughs play a critical role in regulating ocean heat transport to the TIS cavity and the subsequent basal melt of the ice shelf. 
    more » « less
  5. Abstract The Southern Ocean plays a major role in controlling the evolution of Antarctic glaciers and in turn their impact on sea level rise. We present the Southern Ocean high‐resolution (SOhi) simulation of the MITgcm ocean model to reproduce ice‐ocean interaction at 1/24° around Antarctica, including all ice shelf cavities and oceanic tides. We evaluate the model accuracy on the continental shelf using Marine Mammals Exploring the Oceans Pole to Pole data and compare the results with three other MITgcm ocean models (ECCO4, SOSE, and LLC4320) and the ISMIP6 temperature reconstruction. Below 400 m, all the models exhibit a warm bias on the continental shelf, but the bias is reduced in the high‐resolution simulations. We hypothesize some of the bias is due to an overestimation of sea ice cover, which reduces heat loss to the atmosphere. Both high‐resolution and accurate bathymetry are required to improve model accuracy around Antarctica. 
    more » « less