Radiology report generation, translating radiological images into precise and clinically relevant description, may face the data imbalance challenge — medical tokens appear less frequently than regular tokens, and normal entries are significantly more than abnormal ones. However, very few studies consider the imbalance issues, not even with conjugate imbalance factors. In this study, we propose a Joint Imbalance Adaptation (JIMA) model to promote task robustness by leveraging token and label imbalance. We employ a hard-to-easy learning strategy that mitigates overfitting to frequent labels and tokens, thereby encouraging the model to focus more on infrequent labels and clinical tokens. JIMA presents notable improvements (16.75–50.50% on average) across evaluation metrics on IU X-ray and MIMIC-CXR datasets. Our ablation analysis and human evaluations show the improvements mainly come from enhancing performance on infrequent tokens and abnormal radiological entries, which can also lead to more clinically accurate reports. While data imbalance (e.g., infrequent tokens and abnormal labels) can lead to the underperformance of radiology report generation, our imbalance learning strategy opens promising directions on how to encounter data imbalance by reducing overfitting on frequent patterns and underfitting on infrequent patterns.
more »
« less
Token Imbalance Adaptation for Radiology Report Generation
Imbalanced token distributions naturally exist in text documents, leading neural language models to overfit on frequent tokens. The token imbalance may dampen the robustness of radiology report generators, as complex medical terms appear less frequently but reflect more medical information. In this study, we demonstrate how current state-of-the-art models fail to generate infrequent tokens on two standard benchmark datasets (IU X-RAY and MIMIC-CXR) of radiology report generation. To solve the challenge, we propose the \textbf{T}oken \textbf{Im}balance Adapt\textbf{er} (\textit{TIMER}), aiming to improve generation robustness on infrequent tokens. The model automatically leverages token imbalance by an unlikelihood loss and dynamically optimizes generation processes to augment infrequent tokens. We compare our approach with multiple state-of-the-art methods on the two benchmarks. Experiments demonstrate the effectiveness of our approach in enhancing model robustness overall and infrequent tokens. Our ablation analysis shows that our reinforcement learning method has a major effect in adapting token imbalance for radiology report generation.
more »
« less
- Award ID(s):
- 2245920
- PAR ID:
- 10529031
- Editor(s):
- Mortazavi, Bobak J; Sarker, Tasmie; Beam, Andrew; Ho, Joyce C
- Publisher / Repository:
- Proceedings of Machine Learning Research
- Date Published:
- Volume:
- 209
- Page Range / eLocation ID:
- 72--85
- Format(s):
- Medium: X
- Location:
- Boston, MA
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We propose Vision Token Turing Machines (ViTTM), an efficient, low-latency, memory-augmented Vision Transformer (ViT). Our approach builds on Neural Turing Machines and Token Turing Machines, which were applied to NLP and sequential visual understanding tasks. ViTTMs are designed for non-sequential computer vision tasks such as image classification and segmentation. Our model creates two sets of tokens: process tokens and memory tokens; process tokens pass through encoder blocks and read-write from memory tokens at each encoder block in the network, allowing them to store and retrieve information from memory. By ensuring that there are fewer process tokens than memory tokens, we are able to reduce the inference time of the network while maintaining its accuracy. On ImageNet-1K, the state-of-the-art ViT-B has median latency of 529.5ms and 81.0% accuracy, while our ViTTM-B is 56% faster (234.1ms), with 2.4 times fewer FLOPs, with an accuracy of 82.9%. On ADE20K semantic segmentation, ViT-B achieves 45.65mIoU at 13.8 frame-per-second (FPS) whereas our ViTTM-B model acheives a 45.17 mIoU with 26.8 FPS (+94%).more » « less
-
This paper presents Diffusion Forcing, a new training paradigm where a diffusion model is trained to denoise a set of tokens with independent per-token noise levels. We apply Diffusion Forcing to sequence generative modeling by training a causal next-token prediction model to generate one or several future tokens without fully diffusing past ones. Our approach is shown to combine the strengths of next-token prediction models, such as variable-length generation, with the strengths of full-sequence diffusion models, such as the ability to guide sampling to desirable trajectories. Our method offers a range of additional capabilities, such as (1) rolling-out sequences of continuous tokens, such as video, with lengths past the training horizon, where baselines diverge and (2) new sampling and guiding schemes that uniquely profit from Diffusion Forcing's variable-horizon and causal architecture, and which lead to marked performance gains in decision-making and planning tasks. In addition to its empirical success, our method is proven to optimize a variational lower bound on the likelihoods of all subsequences of tokens drawn from the true joint distribution.more » « less
-
Before deploying outputs from foundation models in high-stakes tasks, it is imperative to ensure that they align with human values. For instance, in radiology report generation, reports generated by a vision-language model must align with human evaluations before their use in medical decision-making. This paper presents Conformal Alignment, a general framework for identifying units whose outputs meet a user-specified alignment criterion. It is guaranteed that on average, a prescribed fraction of selected units indeed meet the alignment criterion, regardless of the foundation model or the data distribution. Given any pre-trained model and new units with model-generated outputs, Conformal Alignment leverages a set of reference data with ground-truth alignment status to train an alignment predictor. It then selects new units whose predicted alignment scores surpass a data-dependent threshold, certifying their corresponding outputs as trustworthy. Through applications to question answering and radiology report generation, we demonstrate that our method is able to accurately identify units with trustworthy outputs via lightweight training over a moderate amount of reference data. En route, we investigate the informativeness of various features in alignment prediction and combine them with standard models to construct the alignment predictor.more » « less
-
Large Language Models (LLMs) have received much recent attention due to their human-level accuracy. While existing works mostly focus on either improving accuracy or testing accuracy robustness, the computation efficiency of LLMs, which is of paramount importance due to often vast generation demands and real-time requirements, has surprisingly received little attention. In this article, we make the first attempt to understand and test potential computation efficiency robustness in state-of-the-art LLMs. By analyzing the working mechanism and implementation of 20,543 public-accessible LLMs, we observe a fundamental property in LLMs that could be manipulated in an adversarial manner to reduce computation efficiency significantly. Our interesting observation is that the output length determines the computation efficiency of LLMs instead of the input, where the output length depends on two factors: an often sufficiently large yet pessimistic pre-configured threshold controlling the max number of iterations and a runtime-generated end of sentence (EOS) token. Our key motivation is to generate test inputs that could sufficiently delay the generation of EOS such that LLMs would have to go through enough iterations to satisfy the pre-configured threshold. We presentLLMEffiChecker, which can work under both white-box setting and black-box setting. In the white-box scenario,LLMEffiCheckerdevelops a gradient-guided technique that searches for a minimal and unnoticeable perturbation at character-level, token-level, and structure-level. In the black-box scenario,LLMEffiCheckeremploys a causal inference-based approach to find critical tokens and similarly applies three levels of imperceptible perturbation to them. Both the white-box and black-box settings effectively delay the appearance of EOS, compelling these inputs to reach the naturally unreachable threshold. To demonstrate the effectiveness ofLLMEffiChecker, we conduct a systematic evaluation on nine publicly available LLMs: Google T5, AllenAI WMT14, Helsinki-NLP translator, Facebook FairSeq, UNICAMP-DL translator, MarianMT, Google FLAN-T5, MBZUAI LaMini-GPT, and Salesforce CodeGen. Experimental results show thatLLMEffiCheckercan increase on average LLMs’ response latency and energy consumption by 325% to 3,244% and 344% to 3,616%, respectively, by perturbing just one character or token in the input sentence. Our case study shows that inputs generated byLLMEffiCheckersignificantly affect the battery power in real-world mobile devices (i.e., drain more than 30 times battery power than normal inputs).more » « less
An official website of the United States government

