skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Exploring the tradeoff between data privacy and utility with a clinical data analysis use case
Abstract BackgroundSecuring adequate data privacy is critical for the productive utilization of data. De-identification, involving masking or replacing specific values in a dataset, could damage the dataset’s utility. However, finding a reasonable balance between data privacy and utility is not straightforward. Nonetheless, few studies investigated how data de-identification efforts affect data analysis results. This study aimed to demonstrate the effect of different de-identification methods on a dataset’s utility with a clinical analytic use case and assess the feasibility of finding a workable tradeoff between data privacy and utility. MethodsPredictive modeling of emergency department length of stay was used as a data analysis use case. A logistic regression model was developed with 1155 patient cases extracted from a clinical data warehouse of an academic medical center located in Seoul, South Korea. Nineteen de-identified datasets were generated based on various de-identification configurations using ARX, an open-source software for anonymizing sensitive personal data. The variable distributions and prediction results were compared between the de-identified datasets and the original dataset. We examined the association between data privacy and utility to determine whether it is feasible to identify a viable tradeoff between the two. ResultsAll 19 de-identification scenarios significantly decreased re-identification risk. Nevertheless, the de-identification processes resulted in record suppression and complete masking of variables used as predictors, thereby compromising dataset utility. A significant correlation was observed only between the re-identification reduction rates and the ARX utility scores. ConclusionsAs the importance of health data analysis increases, so does the need for effective privacy protection methods. While existing guidelines provide a basis for de-identifying datasets, achieving a balance between high privacy and utility is a complex task that requires understanding the data’s intended use and involving input from data users. This approach could help find a suitable compromise between data privacy and utility.  more » « less
Award ID(s):
2124789
PAR ID:
10529049
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Springer Science and Business Media LLC
Date Published:
Journal Name:
BMC Medical Informatics and Decision Making
Volume:
24
Issue:
1
ISSN:
1472-6947
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. There has been considerable controversy regarding the accuracy and privacy of de-identification mechanisms used in the U.S. Decennial Census. We theoretically and experimentally analyze two such classes of mechanisms, swapping and differential privacy, especially examining their effects on ethnoracial minority groups. We first prove that the expected error of queries made on swapped demographic datasets is greater in sub-populations whose racial distributions differ more from the racial distribution of the global population. We also prove that the probability that m unique entries exist in a sub-population shrinks exponentially as the sub-population size grows. These properties suggest that swapping, which prioritizes unique entries, will produce poor accuracy for minority groups. We then empirically analyze the impact of swapping and differential privacy on the accuracy and privacy of a de- mographic dataset. We evaluate accuracy in several ways, including methods that stress the effect on minority groups. We evaluate privacy by counting the number of re-identified entries in a simulated linkage attack. Finally, we explore the disproportionate presence of minority groups in identified entries. Our empirical findings corroborate our theoretical results: for minority representation, the utility of differential privacy is comparable to the utility of swapping, while providing a stronger privacy guarantee. Swapping places a disproportionate privacy burden on minority groups, whereas an ϵ- differentially private mechanism is ϵ-differentially private for all subgroups. 
    more » « less
  2. Several face de-identification methods have been proposed to preserve users’ privacy by obscuring their faces. These methods, however, can degrade the quality of photos, and they usually do not preserve the utility of faces, i.e., their age, gender, pose, and facial expression. Recently, advanced generative adversarial network models, such as StyleGAN [ 33], have been proposed, which generate realistic, high-quality imaginary faces. In this paper, we investigate the use of StyleGAN in generating de-identified faces through style mixing, where the styles or features of the target face and an auxiliary face get mixed to generate a de-identified face that carries the utilities of the target face. We examined this de-identification method for preserving utility and privacy by implementing several face detection, verification, and identification attacks and conducting a user study. The results from our extensive experiments, human evaluation, and comparison with two state-of-the-art face de-identification methods, i.e., CIAGAN and DeepPrivacy, show that StyleGAN performs on par or better than these methods, preserving users’ privacy and images’ utility. In particular, the results of the machine learning-based experiments show that StyleGAN0-4 preserves utility better than CIAGAN and DeepPrivacy while preserving privacy at the same level. StyleGAN 0-3 preserves utility at the same level while providing more privacy. In this paper, for the first time, we also performed a carefully designed user study to examine both privacy and utility-preserving properties of StyleGAN 0-3, 0-4, and 0-5, as well as CIAGAN and DeepPrivacy from the human observers’ perspectives. Our statistical tests showed that participants tend to verify and identify StyleGAN 0-5 images easier than DeepPrivacy images. All the methods but StyleGAN 0-5 had significantly lower identification rates than CIAGAN. Regarding utility, as expected, StyleGAN 0-5 performed significantly better in preserving some attributes. Among all methods, on average, participants believe gender has been preserved the most while naturalness has been preserved the least. 
    more » « less
  3. Abstract ObjectiveEmerging technologies (eg, wearable devices) have made it possible to collect data directly from individuals (eg, time-series), providing new insights on the health and well-being of individual patients. Broadening the access to these data would facilitate the integration with existing data sources (eg, clinical and genomic data) and advance medical research. Compared to traditional health data, these data are collected directly from individuals, are highly unique and provide fine-grained information, posing new privacy challenges. In this work, we study the applicability of a novel privacy model to enable individual-level time-series data sharing while maintaining the usability for data analytics. Methods and materialsWe propose a privacy-protecting method for sharing individual-level electrocardiography (ECG) time-series data, which leverages dimensional reduction technique and random sampling to achieve provable privacy protection. We show that our solution provides strong privacy protection against an informed adversarial model while enabling useful aggregate-level analysis. ResultsWe conduct our evaluations on 2 real-world ECG datasets. Our empirical results show that the privacy risk is significantly reduced after sanitization while the data usability is retained for a variety of clinical tasks (eg, predictive modeling and clustering). DiscussionOur study investigates the privacy risk in sharing individual-level ECG time-series data. We demonstrate that individual-level data can be highly unique, requiring new privacy solutions to protect data contributors. ConclusionThe results suggest our proposed privacy-protection method provides strong privacy protections while preserving the usefulness of the data. 
    more » « less
  4. Martelli, Pier Luigi (Ed.)
    Abstract MotivationThe affordability of genome sequencing and the widespread availability of genomic data have opened up new medical possibilities. Nevertheless, they also raise significant concerns regarding privacy due to the sensitive information they encompass. These privacy implications act as barriers to medical research and data availability. Researchers have proposed privacy-preserving techniques to address this, with cryptography-based methods showing the most promise. However, existing cryptography-based designs lack (i) interoperability, (ii) scalability, (iii) a high degree of privacy (i.e. compromise one to have the other), or (iv) multiparty analyses support (as most existing schemes process genomic information of each party individually). Overcoming these limitations is essential to unlocking the full potential of genomic data while ensuring privacy and data utility. Further research and development are needed to advance privacy-preserving techniques in genomics, focusing on achieving interoperability and scalability, preserving data utility, and enabling secure multiparty computation. ResultsThis study aims to overcome the limitations of current cryptography-based techniques by employing a multi-key homomorphic encryption scheme. By utilizing this scheme, we have developed a comprehensive protocol capable of conducting diverse genomic analyses. Our protocol facilitates interoperability among individual genome processing and enables multiparty tests, analyses of genomic databases, and operations involving multiple databases. Consequently, our approach represents an innovative advancement in secure genomic data processing, offering enhanced protection and privacy measures. Availability and implementationAll associated code and documentation are available at https://github.com/farahpoor/smkhe. 
    more » « less
  5. Eye-tracking is a critical source of information for understanding human behavior and developing future mixed-reality technology. Eye-tracking enables applications that classify user activity or predict user intent. However, eye-tracking datasets collected during common virtual reality tasks have also been shown to enable unique user identification, which creates a privacy risk. In this paper, we focus on the problem of user re-identification from eye-tracking features. We adapt standardized privacy definitions of k-anonymity and plausible deniability to protect datasets of eye-tracking features, and evaluate performance against re-identification by a standard biometric identification model on seven VR datasets. Our results demonstrate that re-identification goes down to chance levels for the privatized datasets, even as utility is preserved to levels higher than 72% accuracy in document type classification. 
    more » « less