skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Alfvénic fluctuations in the expanding solar wind: Formation and radial evolution of spherical polarization
We investigate properties of large-scale solar wind Alfvénic fluctuations and their evolution during radial expansion. We assume a strictly radial background magnetic field B∥R, and we use two-dimensional hybrid (fluid electrons, kinetic ions) simulations of balanced Alfvénic turbulence in the plane orthogonal to B; the simulated plasma evolves in a system comoving with the solar wind (i.e., in the expanding box approximation). Despite some model limitations, simulations exhibit important properties observed in the solar wind plasma: Magnetic field fluctuations evolve toward a state with low-amplitude variations in the amplitude B=|B| and tend to a spherical polarization. This is achieved in the plasma by spontaneously generating field aligned, radial fluctuations that suppress local variations of B, maintaining B∼ const. spatially in the plasma. We show that within the constraint of spherical polarization, variations in the radial component of the magnetic field, BR lead to a simple relation between δBR and δB=|δB| as δBR∼δB2/(2B), which correctly describes the observed evolution of the rms of radial fluctuations in the solar wind. During expansion, the background magnetic field amplitude decreases faster than that of fluctuations so that their the relative amplitude increases. In the regime of strong fluctuations, δB∼B, this causes local magnetic field reversals, consistent with solar wind switchbacks.  more » « less
Award ID(s):
2141564
PAR ID:
10529070
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
AIP
Date Published:
Journal Name:
Physics of Plasmas
Volume:
31
Issue:
3
ISSN:
1070-664X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract In this Letter, we report observations of magnetic switchback (SB) features near 1 au using data from the Wind spacecraft. These features appear to be strikingly similar to the ones observed by the Parker Solar Probe mission closer to the Sun: namely, one-sided spikes (or enhancements) in the solar-wind bulk speed V that correlate/anticorrelate with the spikes seen in the radial-field component B R . In the solar-wind streams that we analyzed, these specific SB features near 1 au are associated with large-amplitude Alfvénic oscillations that propagate outward from the Sun along a local background (prevalent) magnetic field B 0 that is nearly radial. We also show that, when B 0 is nearly perpendicular to the radial direction, the large-amplitude Alfvénic oscillations display variations in V that are two sided (i.e., V alternately increases and decreases depending on the vector Δ B = B − B 0 ). As a consequence, SBs may not always appear as one-sided spikes in V , especially at larger heliocentric distances where the local background field statistically departs from the radial direction. We suggest that SBs can be well described by large-amplitude Alfvénic fluctuations if the field rotation is computed with respect to a well-determined local background field that, in some cases, may deviate from the large-scale Parker field. 
    more » « less
  2. Abstract The Parker Solar Probe (PSP) and Wind spacecraft observed the same plasma flow during PSP encounter 15. The solar wind evolves from a sub-Alfvénic flow at 0.08 au to become modestly super-Alfvénic at 1 au. We study the radial evolution of the turbulence properties and deduce the spectral anisotropy based on the nearly incompressible (NI) MHD theory. We find that the spectral index of thez+spectrum remains unchanged (∼−1.53), while thezspectrum steepens, the index of which changes from −1.35 to −1.47. The fluctuating kinetic energy is on average greater than the fluctuating magnetic field energy in the sub-Alfvénic flow while smaller in the modestly super-Alfvénic flow. The NI MHD theory well interprets the observed Elsässer spectra. The contribution of 2D fluctuations is nonnegligible for the observedzfrequency spectra for both intervals. Particularly, the magnitudes of 2D and NI/slab fluctuations are comparable in the frequency domain for the modestly super-Alfvénic flow, resulting in a slightly concave shape ofzspectrum at 1 au. We show that, in the wavenumber domain, the power ratio of the observed forward NI/slab and 2D fluctuations is  ∼15 at 0.08 au, while it decreases to  ∼3 at 1 au, suggesting the growing significance of the 2D fluctuations as the turbulence evolves in low Mach number solar wind. 
    more » « less
  3. Abstract Parker Solar Probe (PSP) observed predominately Alfvénic fluctuations in the solar wind near the Sun where the magnetic field tends to be radially aligned. In this paper, two magnetic-field-aligned solar wind flow intervals during PSP’s first two orbits are analyzed. Observations of these intervals indicate strong signatures of parallel/antiparallel-propagating waves. We utilize multiple analysis techniques to extract the properties of the observed waves in both magnetohydrodynamic (MHD) and kinetic scales. At the MHD scale, outward-propagating Alfvén waves dominate both intervals, and outward-propagating fast magnetosonic waves present the second-largest contribution in the spectral energy density. At kinetic scales, we identify the circularly polarized plasma waves propagating near the proton gyrofrequency in both intervals. However, the sense of magnetic polarization in the spacecraft frame is observed to be opposite in the two intervals, although they both possess a sunward background magnetic field. The ion-scale plasma wave observed in the first interval can be either an inward-propagating ion cyclotron wave (ICW) or an outward-propagating fast-mode/whistler wave in the plasma frame, while in the second interval it can be explained as an outward ICW or inward fast-mode/whistler wave. The identification of the exact kinetic wave mode is more difficult to confirm owing to the limited plasma data resolution. The presence of ion-scale waves near the Sun suggests that ion cyclotron resonance may be one of the ubiquitous kinetic physical processes associated with small-scale magnetic fluctuations and kinetic instabilities in the inner heliosphere. 
    more » « less
  4. Abstract One of the striking observations from the Parker Solar Probe (PSP) spacecraft is the prevalence in the inner heliosphere of large amplitude, Alfvénic magnetic field reversals termed switchbacks . These δ B R / B ∼  ( 1 ) fluctuations occur over a range of timescales and in patches separated by intervals of quiet, radial magnetic field. We use measurements from PSP to demonstrate that patches of switchbacks are localized within the extensions of plasma structures originating at the base of the corona. These structures are characterized by an increase in alpha particle abundance, Mach number, plasma β and pressure, and by depletions in the magnetic field magnitude and electron temperature. These intervals are in pressure balance, implying stationary spatial structure, and the field depressions are consistent with overexpanded flux tubes. The structures are asymmetric in Carrington longitude with a steeper leading edge and a small (∼1°) edge of hotter plasma and enhanced magnetic field fluctuations. Some structures contain suprathermal ions to ∼85 keV that we argue are the energetic tail of the solar wind alpha population. The structures are separated in longitude by angular scales associated with supergranulation. This suggests that these switchbacks originate near the leading edge of the diverging magnetic field funnels associated with the network magnetic field—the primary wind sources. We propose an origin of the magnetic field switchbacks, hot plasma and suprathermals, alpha particles in interchange reconnection events just above the solar transition region and our measurements represent the extended regions of a turbulent outflow exhaust. 
    more » « less
  5. Abstract We present the first theoretical modeling of joint Parker Solar Probe (PSP)–Metis/Solar Orbiter (SolO) quadrature observations. The combined observations describe the evolution of a slow solar wind plasma parcel from the extended solar corona (3.5–6.3 R ⊙ ) to the very inner heliosphere (23.2 R ⊙ ). The Metis/SolO instrument remotely measures the solar wind speed finding a range from 96 to 201 km s −1 , and PSP measures the solar wind plasma in situ, observing a radial speed of 219.34 km s −1 . We find theoretically and observationally that the solar wind speed accelerates rapidly within 3.3–4 R ⊙ and then increases more gradually with distance. Similarly, we find that the theoretical solar wind density is consistent with the remotely and in-situ observed solar wind density. The normalized cross helicity and normalized residual energy observed by PSP are 0.96 and −0.07, respectively, indicating that the slow solar wind is very Alfvénic. The theoretical NI/slab results are very similar to PSP measurements, which is a consequence of the highly magnetic field-aligned radial flow ensuring that PSP can measure slab fluctuations and not 2D ones. Finally, we calculate the theoretical 2D and slab turbulence pressure, finding that the theoretical slab pressure is very similar to that observed by PSP. 
    more » « less