skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Microstructural Impacts on the Oxidation of Multi-Principal Element Alloys
The impacts of thermal treatment on the precipitate morphology and oxidation behavior of a dual-phase (FCC + L12) multi-principal element alloy (MPEA), Ni45Co17Cr14Fe12Al7Ti5, was studied at 1000 °C via isothermal and cyclic testing. Thermogravimetric analysis and subsequent characterization revealed that smaller precipitates had an increased capacity to form protective sub-surface oxide layers which mitigated total mass gain. The smaller-precipitate-containing samples exhibited a decrease in thickness of the primary Cr2O3 scale and parabolic growth rate. Mechanistically this behavior is believed to stem from the increased growth rate of initial Al2O3 nuclei and decreased inter-precipitate spacing which results in faster lateral diffusion and agglomeration.  more » « less
Award ID(s):
2105364
PAR ID:
10529093
Author(s) / Creator(s):
;
Publisher / Repository:
Springer
Date Published:
Journal Name:
High Temperature Corrosion of Materials
Volume:
101
Issue:
3
ISSN:
2731-8397
Page Range / eLocation ID:
389 to 412
Subject(s) / Keyword(s):
High-entropy alloys Oxidation Two-phase alloy Microstructure Modeling
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Athermal resistance to the motion of a phase interface due to a precipitate is investigated. The coupled phase field and elasticity equations are solved for the phase transformation (PT). The volumetric misfit strain due to the precipitate is included using the error and rectangular functions. Due to the presence of precipitates, the critical thermal driving forces remarkably differ between the direct and reverse PTs, resulting in a hysteresis behavior. For the precipitate radius small compared to the interface width, the misfit strain does not practically show any effect on the critical thermal driving force. Also, the critical thermal driving force value nonlinearly increases vs. the precipitate concentration for both the direct and reverse PTs. Change in the precipitate surface energy significantly changes the PT morphology and the critical thermal driving forces. The critical thermal driving force shows dependence on the misfit strain for large precipitate sizes compared to the interface width. For both the constant surface energy (CSE) and variable surface energy (VSE) boundary conditions (BCs) at the precipitate surface, the critical thermal driving force linearly increases vs. the misfit strain coefficient for the direct PT while it is almost independent of it for the reverse PT. For larger precipitates, the critical thermal driving force nonlinearly increases vs. the precipitate concentration for the direct PT. For the reverse PT, its value for the CSE BCs linearly increases vs. the precipitate concentration while it is independent of the precipitate concentration for the VSE BCs. Also, for any concentration, the VSE BCs result in higher thermal critical driving forces, a smaller hysteresis range, and a larger transformation rate. The critical microstructure and thermal driving forces are validated using the thermodynamic phase equilibrium condition for stationary interfaces. 
    more » « less
  2. Athermal resistance to the motion of a phase interface due to a precipitate is investigated. The coupled phase field and elasticity equations are solved for the phase transformation (PT). The volumetric misfit strain due to the precipitate is included using the error and rectangular functions. Due to the presence of precipitates, the critical thermal driving forces remarkably differ between the direct and reverse PTs, resulting in a hysteresis behavior. For the precipitate radius small compared to the interface width, the misfit strain does not practically show any effect on the critical thermal driving force. Also, the critical thermal driving force value nonlinearly increases vs. the precipitate concentration for both the direct and reverse PTs. Change in the precipitate surface energy significantly changes the PT morphology and the critical thermal driving forces. The critical thermal driving force shows dependence on the misfit strain for large precipitate sizes compared to the interface width. For both the constant surface energy (CSE) and variable surface energy (VSE) boundary conditions (BCs) at the precipitate surface, the critical thermal driving force linearly increases vs. the misfit strain coefficient for the direct PT while it is almost independent of it for the reverse PT. For larger precipitates, the critical thermal driving force nonlinearly increases vs. the precipitate concentration for the direct PT. For the reverse PT, its value for the CSE BCs linearly increases vs. the precipitate concentration while it is independent of the precipitate concentration for the VSE BCs. Also, for any concentration, the VSE BCs result in higher thermal critical driving forces, a smaller hysteresis range, and a larger transformation rate. The critical microstructure and thermal driving forces are validated using the thermodynamic phase equilibrium condition for stationary interfaces. 
    more » « less
  3. Ward, C (Ed.)
    Computational microstructure design aims to fully exploit the precipitate strengthening potential of an alloy system. The development of accurate models to describe the temporal evolution of precipitate shapes and sizes is of great technological relevance. The experimental investigation of the precipitate microstructure is mostly based on two-dimensional micrographic images. Quantitative modeling of the temporal evolution of these microstructures needs to be discussed in three-dimensional simulation setups. To consistently bridge the gap between 2D images and 3D simulation data, we employ the method of central moments. Based on this, the aspect ratio of plate-like particles is consistently defined in two and three dimensions. The accuracy and interoperability of the method is demonstrated through representative 2D and 3D pixel-based sample data containing particles with a predefined aspect ratio. The applicability of the presented approach in integrated computational materials engineering (ICME) is demonstrated by the example of γ″ microstructure coarsening in Ni-based superalloys at 730 °C. For the first time, γ″ precipitate shape information from experimental 2D images and 3D phase-field simulation data is directly compared. This coarsening data indicates deviations from the classical ripening behavior and reveals periods of increased precipitate coagulation. 
    more » « less
  4. Abstract When a novel disease strikes a naïve host population, there is evidence that the most immediate response can involve host evolution while the pathogen remains relatively unchanged. When hosts also live in metapopulations, there may be critical differences in the dynamics that emerge from the synergy among evolutionary, ecological, and epidemiological factors. Here we used a Susceptible-Infected-Recovery model to explore how spatial and temporal ecological factors may drive the epidemiological and rapid-evolutionary dynamics of host metapopulations. For simplicity, we assumed two host genotypes: wild type, which has a positive intrinsic growth rate in the absence of disease, and robust type, which is less likely to catch the infection given exposure but has a lower intrinsic growth rate in the absence of infection. We found that the robust-type host would be strongly selected for in the presence of disease when transmission differences between the two types is large. The growth rate of the wild type had dual but opposite effects on host composition: a smaller increase in wild-type growth increased wild-type competition and lead to periodical disease outbreaks over the first generations after pathogen introduction, while larger growth increased disease by providing more susceptibles, which increased robust host density but decreased periodical outbreaks. Increased migration had a similar impact as the increased differential susceptibility, both of which led to an increase in robust hosts and a decrease in periodical outbreaks. Our study provided a comprehensive understanding of the combined effects among migration, disease epidemiology, and host demography on host evolution with an unchanging pathogen. The findings have important implications for wildlife conservation and zoonotic disease control. 
    more » « less
  5. Abstract Linking drought to the timing of physiological processes governing tree growth remains one limitation in forecasting climate change effects on tropical trees. Using dendrometers, we measured fine‐scale growth for 96 trees of 25 species from 2013 to 2016 in an everwet forest in Puerto Rico. Rainfall over this time span varied, including an unusual, severe El Niño drought in 2015. We assessed how growing season onset, median day, conclusion, and length varied with absolute growth rate and tree size over time. Stem growth was seasonal, beginning in February, peaking in July, and ending in November. Species growth rates varied between 0 and 8 mm/year and correlated weakly with specific leaf area, leaf phosphorus, and leaf nitrogen, and to a lesser degree with wood specific gravity and plant height. Drought and tree growth were decoupled, and drought lengthened and increased variation in growing season length. During the 2015 drought, many trees terminated growth early but did not necessarily grow less. In the year following drought, trees grew more over a shorter growing season, with many smaller trees showing a post‐drought increase in growth. We attribute the increased growth of smaller trees to release from light limitation as the canopy thinned because of the drought, and less inferred hydraulic stress than larger trees during drought. Soil type accounted for interannual and interspecific differences, with the finest Zarzal clays reducing tree growth. We conclude that drought affects the phenological timing of tree growth and favors the post‐drought growth of smaller, sub‐canopy trees in this everwet forest. Abstract in Spanish is available with online material. 
    more » « less