skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Advancing Fuel Spray Characterization: A Machine Learning Approach for Directly Injected Gasoline Fuel Sprays
Award ID(s):
2112554
PAR ID:
10529176
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Fuel
Volume:
371
Issue:
PB
ISSN:
0016-2361
Page Range / eLocation ID:
131980
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this work, we present hardware and firmware design and preliminary testing results for a noninvasive device for measuring fuel oil consumption in fuel oil vented heaters. Fuel oil vented heaters are a popular space heating method in northern climates. Monitoring fuel consumption is useful to understanding residential daily and seasonal heating patterns and understanding the thermal characteristics of buildings. The device is a pump monitoring apparatus (PuMA) that employs a magnetoresistive sensor to monitor the activity of solenoid driven positive displacement pumps, which are commonly used in fuel oil vented heaters. PuMA accuracy for calculating fuel oil consumption was evaluated in a lab setting and found to vary up to 7% from the measured consumption value during testing. This variance will be explored more in field testing. 
    more » « less
  2. Active matter taps into external energy sources to power its own processes. Systems of passive particles ordinarily lack this capacity, but can become active if the constituent particles interact with each other nonreciprocally. By reformulating the theory of classical wave-matter interactions, we demonstrate that interactions mediated by scattered waves generally are not constrained by Newton's third law. The resulting center-of-mass forces propel clusters of scatterers, enabling them to extract energy from the wave and rendering them active. This form of activity is an emergent property of the scatterers' state of organization and can arise in any system where mobile objects scatter waves. Emergent activity flips the script on conventional active matter whose nonreciprocity emerges from its activity, and not the other way around. We combine theory, experiment, and simulation to illustrate how emergent activity arises in wave-matter composite systems and to explore the phenomenology of emergent activity in experimentally accessible models. These preliminary studies suggest that heterogeneity is a singular perturbation to the dynamics of wave-matter composite systems, and induces emergent activity under all but the most limited circumstances. 
    more » « less
  3. Rational design of soft-to-hard material interfaces offers new opportunities to control matter and energy across the nano- and meso-scales, thus providing a chemical strategy to tailor the structural and physical properties of surfaces with molecular level precision. In the context of energy transduction, interfacing molecular catalysts with solid-state substrates is a promising approach to developing hybrid materials for generating solar fuels. However, effective integration of the requisite components, while controlling their redox properties and stability, remains a major challenge. Taking inspiration from nature, where specific amino acid residues and soft-material coordination environments control the redox properties of metal centers in proteins during enzymatic catalysis, we show that thin-film polymer surface coatings provide a novel strategy for assembling human-engineered catalysts onto solid supports. This presentation describes recent results from our laboratory aimed at better understanding the electrochemical and optical properties of hydrogen production catalysts assembled onto polymer-modified electrode surfaces. The polymer immobilization method results in unique electronic and vibrational spectroscopic signals associated with the immobilized molecular species. In addition, the use of discrete polymer architectures, coupled with rational synthetic modifications to the catalyst’s ligand environment, affords control over the chemical stability and redox potentials of surface immobilized molecular complexes, spanning a ~250 mV range. 
    more » « less