skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


This content will become publicly available on June 23, 2025

Title: Board 316: Innovation Self-Efficacy: Empowering Environmental Engineering Students to Innovate
This project evaluates if and how an intervention to design a K-12 STEM activity related to water chemistry impacts the innovation self-efficacy (ISE) of junior students enrolled in a required environmental engineering course. ISE is defined as having five behavioral components: questioning, observing, experimenting, idea networking, and associational thinking. In this course, the K-12 STEM activity is designed with a team of 3 to 5 students. The activity requires that the students develop an innovative activity that demonstrates environmental engineering concepts such as acid mine drainage, ocean acidification, and contaminant removal. The student projects are scaffolded throughout the 10 weeks via intermediate submissions and meetings with a K-12 STEM teacher and design mentors. In fall 2022 a pilot of the study was conducted and relied on a quantitative survey instrument that measured ISE, innovation interest (INT), and future innovative work interest (IW). Based on the preliminary findings of factor structure, item reliability, and face validity evaluated by two faculty and two undergraduate students, small changes were made to the quantitative assessment instrument. The revised survey was deployed in the fall of 2023 in a required junior-level test course and a senior-level control course. The senior-level control course consisted of students who took the junior-level course with the K-12 STEM activity in the previous year. In 2023 the K-12 STEM activity intervention also included additional scaffolding through the addition of 3 team-based and 2 individual reflections to understand the process of ISE formation. Pre-post comparisons of the quantitative survey items will be conducted for individual students in the test and control courses. Team and individual reflections from the test course will be analyzed after the course. Potential demographic differences in ISE will be explored. Potential team-level influences will also be evaluated to understand the impact of a team’s ISE score on enhancing an individual team member’s ISE gain. Focus groups and individual interviews with students who participated in the test course will take place in spring 2024. The ISE, INT, and IW of environmental engineering students will be further assessed in spring 2024 through the ISE survey in the environmental engineering capstone design course and a junior-level creativity and entrepreneurship design course. This assessment will compare two different learning experiences on ISE, INT, and IW, the K-12 STEM education activity design with a semester-long, group-based technical design experience. Preliminary results will be presented in the NSF Grantees Poster Session.  more » « less
Award ID(s):
2205067
PAR ID:
10529235
Author(s) / Creator(s):
;
Publisher / Repository:
ASEE PEER
Date Published:
Subject(s) / Keyword(s):
Innovation self-efficacy environmental engineering questioning skill observing skill experimentation idea networking skill associational thinking skill innovative interest, creative work
Format(s):
Medium: X
Location:
https://peer.asee.org/46895
Sponsoring Org:
National Science Foundation
More Like this
  1. This research explored potential relationships between the innovation self-efficacy (ISE) of engineering students and their artistic creativity and life experiences revealed on an ice-breaker assignment. In a community-building assignment, students were directed to introduce themselves through cartoon monster drawings that communicated various personal attributes (such as the number of languages they speak, and the number of states visited). Previous research has found that multicultural experiences can shape feelings of self-efficacy concerning innovation and creativity. This pilot study was conducted in a single junior-level course for environmental engineering students. The innovation self-efficacy of participants was measured using a survey that included items from the Very Brief Innovation Self-Efficacy scale (ISE.6), the Innovation Interests scale (INI), and the Career Goals: Innovative Work scale (IW). The drawings were analyzed for Artistic Effort (AE) and Creative Work (CW) by engineering and art evaluators, respectively. The ISE survey results were compared with the AE and CW scores and the correlations with travel, gender, and multilingualism on creativity attributes were explored. A strong correlation between CW scores and AE scores was observed. A negative correlation between CW and ISE.6 was found. The CW scores were significantly different between female and male students, except for black/white shading in the cartoon drawings. There were no significant differences between the AE scores for female versus male students. Our results do not support the existence of a correlation between multilingualism and travel with artistic creativity and innovation self-efficacy attributes. Overall, we did not find that the students’ artistic creativity or life experiences revealed through the self-portrait activity provided insights into innovation attitudes. 
    more » « less
  2. Abstract This “work in progress” paper describes a multiyear project to study the development of engineering identity in a chemical and biological engineering program at Montana State University. The project focuses on how engineering identity may be impacted by a series of interventions utilizing subject material in a senior-level capstone design course and has the senior capstone design students serve as peer-mentors to first- and second-year students. A more rapid development of an engineering identity by first- and second-year students is suspected to increase retention and persistence in this engineering program. Through a series of timed interventions scheduled to take place in the first and second year, which includes cohorts that will serve as negative controls (no intervention), we hope to ascertain the following: (1) the extent to which, relative to a control group, exposure to a peer mentor increases a students’ engineering identity development over time compared to those who do not receive peer mentoring and (2) if the quantity and/or timing of the peer interactions impact engineering identity development. While the project includes interventions for both first- and second-year students, this work in progress paper focuses on the experiences of first year freshman as a result of the interventions and their development of an engineering identity over the course of the semester. Early in the fall semester, freshman chemical engineering students enrolled in an introductory chemical engineering course and senior students in a capstone design course were administered a survey which contained a validated instrument to assess engineering identity. The first-year course has 107 students and the senior-level course has 92 students and approximately 50% of the students in both cohorts completed the survey. Mid-semester, after the first-year students were introduced to the concepts of process flow diagrams and material balances in their course, senior design student teams gave presentations about their capstone design projects in the introductory course. The presentations focused on the project goals, design process and highlighted the process flow diagrams. After the presentations, freshman and senior students attended small group dinners as part of a homework assignment wherein the senior students were directed to communicate information about their design projects as well as share their experiences in the chemical engineering program. Dinners occurred overall several days, with up to ten freshman and five seniors attending each event. Freshman students were encouraged to use this time to discover more about the major, inquire about future course work, and learn about ways to enrich their educational experience through extracurricular and co-curricular activities. Several weeks after the dinner experience, senior students returned to give additional presentations to the freshman students to focus on the environmental and societal impacts of their design projects. We report baseline engineering identity in this paper. 
    more » « less
  3. This NSF IUSE project is on the Exploration and Design Tier and the Engaged Student Learning Track. It is aimed at better preparing the country’s professional workforce in the renaissance of U.S. skilled manufacturing by creating new personnel proficient in additive manufacturing (AM). AM is mainstream; it has the potential to bring jobs back to the U.S. and add to the nation’s global competitiveness. AM is the process of joining materials to make objects from 3D data in a layer upon layer fashion. The objectives are to develop, assess, revise, and disseminate an upper division course and laboratory, “Additive Manufacturing,” and to advance undergraduate and K-12 student research and creative inquiry activities as well as faculty expertise at three diverse participating universities: Texas Tech, California State Northridge, and Kansas State. This research/pedagogical team contains a mechanical engineering professor at each university to develop and teach the course, as well as a sociologist trained in K-12 outreach, course assessment, and human subjects research to accurately determine the effects on K-12 and undergraduate students. The proposed course will cover extrusion-based, liquid-based, and powder-based AM processes. For each technology, fundamentals, applications, and advances will be discussed. Students will learn solutions to AM of polymers, metals, and ceramics. Two lab projects will be built to provide hands-on experiences on a variety of state-of-the-art 3D printers. To stimulate innovation, students will design, fabricate, and measure test parts, and will perform experiments to explore process limits and tackle real world problems. They will also engage K-12 students through video demonstrations and mentorship, thus developing presentation skills. Through the project, different pedagogical techniques and assessment tools will be utilized to assess and improve engineering education at both the undergraduate and K-12 levels through varied techniques: i) undergraduate module lesson plans that are scalable to K-12 levels, ii) short informational video lessons created by undergraduates for K-12 students with accompanying in-person mentorship activities at local high schools and MakerSpaces, iii) pre- and post-test assessments of undergraduates’ and K-12 participating students’ AM knowledge, skills, and perceptions of self-efficacy, and iv) focus groups to learn about student concerns/learning challenges. We will also track students institutionally and into their early careers to learn about their use of AM technology professionally. 
    more » « less
  4. This NSF IUSE project is on the Exploration and Design Tier and the Engaged Student Learning Track. It is aimed at better preparing the country’s professional workforce in the renaissance of U.S. skilled manufacturing by creating new personnel proficient in additive manufacturing (AM). AM is mainstream; it has the potential to bring jobs back to the U.S. and add to the nation’s global competitiveness. AM is the process of joining materials to make objects from 3D data in a layer upon layer fashion. The objectives are to develop, assess, revise, and disseminate an upper division course and laboratory, “Additive Manufacturing,” and to advance undergraduate and K-12 student research and creative inquiry activities as well as faculty expertise at three diverse participating universities: Texas Tech, California State-Northridge, and Kansas State. This research/pedagogical team contains a mechanical engineering professor at each university to develop and teach the course, as well as a sociologist trained in K-12 outreach, course assessment, and human subjects research to accurately determine the effects on K-12 and undergraduate students. The proposed course will cover extrusion-based, liquid-based, and powder-based AM processes. For each technology, fundamentals, applications, and advances will be discussed. Students will learn solutions to AM of polymers, metals, and ceramics. Two lab projects will be built to provide hands-on experiences on a variety of state-of-the-art 3D printers. To stimulate innovation, students will design, fabricate, and measure test parts, and will perform experiments to explore process limits and tackle real world problems. They will also engage K-12 students through video demonstrations and mentorship, thus developing presentation skills. Through the project, different pedagogical techniques and assessment tools will be utilized to assess and improve engineering education at both the undergraduate and K-12 levels through varied techniques: i) undergraduate module lesson plans that are scalable to K-12 levels, ii) short informational video lessons created by undergraduates for K-12 students with accompanying in-person mentorship activities at local high schools and MakerSpaces, iii) pre- and post-test assessments of undergraduates’ and K-12 participating students’ AM knowledge, skills, and perceptions of self-efficacy, and iv) focus groups to learn about student concerns/learning challenges. We will also track students institutionally and into their early careers to learn about their use of AM technology professionally. 
    more » « less
  5. As part of a National Science Foundation-funded initiative to completely transform the civil engineering undergraduate program at Clemson University, a capstone-like course sequence is being incorporated into the curriculum during the sophomore year. Clemson’s NSF Revolutionizing Engineering Departments (RED) program is called the Arch Initiative. Just as springers serve as the foundation stones of an arch, the new courses are called “Springers” because they serve as the foundations of the transformed curriculum. Through a project-based learning approach, Springer courses mimic the senior capstone experience by immersing students in a semester-long practical application of civil engineering, exposing them to concepts and tools in a way that challenges students to develop new knowledge that they will build on and use during their junior and senior years. In the 2019 spring semester, a pilot of the first Springer course introduced students to three civil engineering sub-disciplines: construction management, water resources, and transportation. The remaining sub-disciplines are covered in a follow-on Springer 2 pilot. The purpose of this paper is to describe all aspects of the Springer 1 course, including course content, teaching methods, faculty resources, and the design and results of a Student Assessment of Learning Gains (SALG) survey to assess students’ learning outcomes. The feedback from the SALG indicated positive attitudes towards course activities and content. Challenges for full-scale implementation of the Springer course sequence as a requirement in the transformed curriculum are also discussed. 
    more » « less