skip to main content


Title: Work in Progress: Formation of an engineering identity in first-year students through an intervention centered on senior design projects
Abstract This “work in progress” paper describes a multiyear project to study the development of engineering identity in a chemical and biological engineering program at Montana State University. The project focuses on how engineering identity may be impacted by a series of interventions utilizing subject material in a senior-level capstone design course and has the senior capstone design students serve as peer-mentors to first- and second-year students. A more rapid development of an engineering identity by first- and second-year students is suspected to increase retention and persistence in this engineering program. Through a series of timed interventions scheduled to take place in the first and second year, which includes cohorts that will serve as negative controls (no intervention), we hope to ascertain the following: (1) the extent to which, relative to a control group, exposure to a peer mentor increases a students’ engineering identity development over time compared to those who do not receive peer mentoring and (2) if the quantity and/or timing of the peer interactions impact engineering identity development. While the project includes interventions for both first- and second-year students, this work in progress paper focuses on the experiences of first year freshman as a result of the interventions and their development of an engineering identity over the course of the semester. Early in the fall semester, freshman chemical engineering students enrolled in an introductory chemical engineering course and senior students in a capstone design course were administered a survey which contained a validated instrument to assess engineering identity. The first-year course has 107 students and the senior-level course has 92 students and approximately 50% of the students in both cohorts completed the survey. Mid-semester, after the first-year students were introduced to the concepts of process flow diagrams and material balances in their course, senior design student teams gave presentations about their capstone design projects in the introductory course. The presentations focused on the project goals, design process and highlighted the process flow diagrams. After the presentations, freshman and senior students attended small group dinners as part of a homework assignment wherein the senior students were directed to communicate information about their design projects as well as share their experiences in the chemical engineering program. Dinners occurred overall several days, with up to ten freshman and five seniors attending each event. Freshman students were encouraged to use this time to discover more about the major, inquire about future course work, and learn about ways to enrich their educational experience through extracurricular and co-curricular activities. Several weeks after the dinner experience, senior students returned to give additional presentations to the freshman students to focus on the environmental and societal impacts of their design projects. We report baseline engineering identity in this paper.  more » « less
Award ID(s):
1927144
NSF-PAR ID:
10189850
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
ASEE annual conference exposition
ISSN:
2153-5965
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This work in progress explores the impact of activities developed to improve students’ persistence in engineering undergraduate programs as part of a five-year NSF grant. The Program for Engineering Access, Retention, and LIATS Success (PEARLS), has been running for one year in the College of Engineering (CoE) in our institution attempting to increase persistence, retention and graduation rates, and professional success of low-income, academically talented students (LIATS). This paper describes the design of a novel engineering learning community (ELC) introduced as part of the PEARLS project interventions. The ELC is fostered through activities included in a course designed for PEARLS first-year students. During the course, first-year and senior students engaged in different ways: through senior design and capstone projects, peer demonstrations of team projects, and lab visits. We discuss the course structure, activities, and early findings of its implementation. 
    more » « less
  2. The Freshman Year Innovator Experience (FYIE) program at The University of Texas Rio Grande Valley, a Minority Serving Institution (MSI), aims to enhance the freshman experience for incoming students by developing key academic success skills. The program is developing self-transformation skills in freshman mechanical engineering students to help them overcome academic and professional challenges exacerbated by the COVID-19 pandemic. FYIE participants are taking two courses simultaneously: Introduction to Engineering (Course A) and Learning Frameworks (Course B). In Course A, students will complete a 6-week engineering design project, and in Course B, they are completing a 6-week academic career path project. During these parallel projects, timed interventions demonstrate the analogies between the engineering design process and the academic career pathways project. The objective is for students to realize that they can apply the design thinking skills they learn in the engineering design process to solve their academic career challenges. A pilot of the FYIE program began in the 2023 Spring semester, with instructors from Course A and B introducing the parallel projects. The pilot continues in the 2023 Fall semester, with refinements to the parallel projects and the definition of analogy intervention points for self-transformation. The authors of the paper will present the results from the pilot implementations, as well as discuss the challenges and future work. This proposed initiative is designed with the intention of adhering to the ongoing mission of the College of Engineering and Computer Science (CECS) at the UTRGV to 1) increase the number of STEM degrees awarded to Hispanics, 2) broadening participation of females in STEM related fields, and 3) increase the persistence and self-efficacy in STEM fields amid COVID-19. This project is funded by NSF award 2225247. 
    more » « less
  3. null (Ed.)
    Many university engineering programs require their students to complete a senior capstone experience to equip them with the knowledge and skills they need to succeed after graduation. Such capstone experiences typically integrate knowledge and skills learned cumulatively in the degree program, often engaging students in projects outside of the classroom. As part of an initiative to completely transform the civil engineering undergraduate program at Clemson University, a capstone-like course sequence is being incorporated into the curriculum during the sophomore year. Funded by a grant from the National Science Foundation’s Revolutionizing Engineering Departments (RED) program, this departmental transformation (referred to as the Arch initiative) is aiming to develop a culture of adaptation and a curriculum support for inclusive excellence and innovation to address the complex challenges faced by our society. Just as springers serve as the foundation stones of an arch, the new courses are called “Springers” because they serve as the foundations of the transformed curriculum. The goal of the Springer course sequence is to expose students to the “big picture” of civil engineering while developing student skills in professionalism, communication, and teamwork through real-world projects and hands-on activities. The expectation is that the Springer course sequence will allow faculty to better engage students at the beginning of their studies and help them understand how future courses contribute to the overall learning outcomes of a degree in civil engineering. The Springer course sequence is team-taught by faculty from both civil engineering and communication, and exposes students to all of the civil engineering subdisciplines. Through a project-based learning approach, Springer courses mimic capstone in that students work on a practical application of civil engineering concepts throughout the semester in a way that challenges students to incorporate tools that they will build on and use during their junior and senior years. In the 2019 spring semester, a pilot of the first of the Springer courses (Springer 1; n=11) introduced students to three civil engineering subdisciplines: construction management, hydrology, and transportation. The remaining subdisciplines will be covered in a follow-on Springer 2 pilot.. The project for Springer 1 involved designing a small parking lot for a church located adjacent to campus. Following initial instruction in civil engineering topics related to the project, students worked in teams to develop conceptual project designs. A design charrette allowed students to interact with different stakeholders to assess their conceptual designs and incorporate stakeholder input into their final designs. The purpose of this paper is to describe all aspects of the Springer 1 course, including course content, teaching methods, faculty resources, and the design and results of a Student Assessment of Learning Gains (SALG) survey to assess students’ learning outcomes. An overview of the Springer 2 course is also provided. The feedback from the SALG indicated positive attitudes towards course activities and content, and that students found interaction with project stakeholders during the design charrette especially beneficial. Challenges for full scale implementation of the Springer course sequence as a requirement in the transformed curriculum are also discussed. 
    more » « less
  4. Freshman engineering students can have a hard time transitioning to college. The freshman year is critical to the students’ academic success; in this year they learn basic skills and establish essential networks with other students, faculty, and resources. How can we help these freshman engineering students in this transition? We propose that freshman students can learn from the engineering design innovation process and apply it by analogy to the design of their academic pathways. There are multiple similarities between product innovation (i.e., technology) and the continuous academic challenges faced by the student. Engineers as designers and innovators have a vast and rich repository of techniques, tools, and approaches to develop new technologies, and a parallelism can be drawn between the design and innovation of a technology (e.g., redesign of a kitchen appliance), and the “design” of the students’ academic career pathways. During the Spring 2023 semester pilot, students in Intro to Mechanical Engineering (Course A) worked in teams in a 6-week product innovation project to redesign a simple kitchen appliance. Students learned basic concepts of the design process (e.g., creative exploration of solutions, decision making, multi objective evaluation, etc.). These same students concurrently took Course B (Learning Frameworks) where they worked on a 6-week project to define their career pathways. Both projects, product innovation and career pathways, followed the Challenge Based Instruction (CBI) approach. Periodically, participant students were shown how to use the lessons from product innovation by analogy and reflection in their career pathways project. The objective is for students to learn about the engineering design process and to apply it to their academic challenges by analogy. This prepares students with meta skills to help solve future problems in their academic path, and at each iteration, the students transform themselves, hence the use of the term self-transformation (also referred as “self-innovation”). Data collected from pre and post surveys will be presented to measure self-efficacy in engineering design, grit, motivation to learn, and STEM identity. Participant interviews provide a qualitative insight into the intervention. This project is funded by NSF award 2225247. 
    more » « less
  5. As part of a National Science Foundation-funded initiative to completely transform the civil engineering undergraduate program at Clemson University, a capstone-like course sequence is being incorporated into the curriculum during the sophomore year. Clemson’s NSF Revolutionizing Engineering Departments (RED) program is called the Arch Initiative. Just as springers serve as the foundation stones of an arch, the new courses are called “Springers” because they serve as the foundations of the transformed curriculum. Through a project-based learning approach, Springer courses mimic the senior capstone experience by immersing students in a semester-long practical application of civil engineering, exposing them to concepts and tools in a way that challenges students to develop new knowledge that they will build on and use during their junior and senior years. In the 2019 spring semester, a pilot of the first Springer course introduced students to three civil engineering sub-disciplines: construction management, water resources, and transportation. The remaining sub-disciplines are covered in a follow-on Springer 2 pilot. The purpose of this paper is to describe all aspects of the Springer 1 course, including course content, teaching methods, faculty resources, and the design and results of a Student Assessment of Learning Gains (SALG) survey to assess students’ learning outcomes. The feedback from the SALG indicated positive attitudes towards course activities and content. Challenges for full-scale implementation of the Springer course sequence as a requirement in the transformed curriculum are also discussed. 
    more » « less