Motivated by the extraordinary strength of nacre, which exceeds the strength of its fragile constituents by an order of magnitude, the fishnet statistics became in 2017 the only analytically solvable probabilistic model of structural strength other than the weakest-link and fiberbundle models. These two models lead, respectively, to the Weibull and Gaussian (or normal) distributions at the large-size limit, which are hardly distinguishable in the central range of failure probability. But they differ enormously at the failure probability level of 10−6 , considered as the maximum tolerable for engineering structures. Under the assumption that no more than three fishnet links fail prior to the peak load, the preceding studies led to exact solutions intermediate between Weibull and Gaussian distributions. Here massive Monte Carlo simulations are used to show that these exact solutions do not apply for fishnets with more than about 500 links. The simulations show that, as the number of links becomes larger, the likelihood of having more than three failed links up to the peak load is no longer negligible and becomes large for fishnets with many thousands of links. A differential equation is derived for the probability distribution of not-too-large fishnets, characterized by the size effect, the mean and the coefficient of variation. Although the large-size asymptotic distribution is beyond the reach of the Monte Carlo simulations, it can by illuminated by approximating the large-scale fishnet as a continuum with a crack or a circular hole. For the former, instability is proven via complex variables, and for the latter via a known elasticity solution for a hole in a continuum under antiplane shear. The fact that rows or enclaves of link failures acting as cracks or holes can form in the largescale continuum at many random locations necessarily leads to the Weibull distribution of the large fishnet, given that these cracks or holes become unstable as soon they reach a certain critical size. The Weibull modulus of this continuum is estimated to be more than triple that of the central range of small fishnets. The new model is expected to allow spin-offs for printed materials with octet architecture maximizing the strength–weight ratio.
more »
« less
This content will become publicly available on November 1, 2025
Statistical Scaling in Localization-Induced Failures
Abstract The investigation of statistical scaling in localization-induced failures dates back to da Vinci's speculation on the length effect on rope strength in 1500 s. The early mathematical description of statistical scaling emerged with the birth of the extreme value statistics. The most commonly known mathematical model for statistical scaling is the Weibull size effect, which is a direct consequence of the infinite weakest-link model. However, abundant experimental observations on various localization-induced failures have shown that the Weibull size effect is inadequate. Over the last two decades, two mathematical models were developed to describe the statistical size effect in localization-induced failures. One is the finite weakest-link model, in which the random structural resistance is expressed as the minimum of a set of independent discrete random variables. The other is the level excursion model, a continuum description of the finite weakest-link model, in which the structural failure probability is calculated as the probability of the upcrossing of a random field over a barrier. This paper reviews the mathematical formulation of these two models and their applications to various engineering problems including the strength distributions of quasi-brittle structures, failure statistics of micro-electromechanical systems (MEMS) devices, breakdown statistics of high– k gate dielectrics, and probability distribution of buckling pressure of spherical shells containing random geometric imperfections. In addition, the implications of statistical scaling for the stochastic finite element simulations and the reliability-based structural design are discussed. In particular, the recent development of the size-dependent safety factors is reviewed.
more »
« less
- Award ID(s):
- 2151209
- PAR ID:
- 10529267
- Publisher / Repository:
- American Society of Mechanical Engineers
- Date Published:
- Journal Name:
- Applied Mechanics Reviews
- Volume:
- 76
- Issue:
- 6
- ISSN:
- 0003-6900
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Modeling of rock inhomogeneity and anisotropy by explicit and implicit representation of microcracksFracture patterns experienced under a dynamic uniaxial compressive load are highly sensitive to rock microstructural defects due to its brittleness and the absence of macroscopic stress concentration points. We propose two different approaches for modeling rock microstructural defects and inhomogeneity. In the explicit realization approach, microcracks with certain statistics are incorporated in the computational domain. In the implicit realization approach, fracture strength values are sampled using a Weibull probability distribution. We use the Mohr-Coulomb failure criterion to define an effective stress in the context of an interfacial damage model. This model predicts crack propagation at angles ±ɸch = ±(45 − ɸ/2) relative to the direction of compressive load, where ɸ is the friction angle. By using appropriate models for fracture strength anisotropy, we demonstrate the interaction of rock weakest plane and ɸch. Numerical results demonstrate the greater effect of strength anisotropy on fracture pattern when an explicit approach is employed. In addition, the density of fractures increases as the angle of the weakest planes approaches ±ɸch. The fracture simulations are performed by an h-adaptive asynchronous spacetime discontinuous Galerkin (aSDG) method that can accommodate crack propagation in any directions.more » « less
-
Nanoindentation and microcrystal deformation are two methods that allow probing size effects in crystal plasticity. In many cases of microcrystal deformation, scale-free and potentially universal intermittency of event sizes during plastic flow has been revealed, whereas nanoindentation has been mainly used to assess the stress statistics of the first pop-in. Here, we show that both methods of deformation exhibit fundamentally different event-size statistics obtained from plastic instabilities. Nanoindentation results in scale-dependent intermittent microplasticity best described by Weibull statistics (stress and magnitude of the first pop-in) and lognormal statistics (magnitude of higher-order pop-ins). In contrast, finite-volume microcrystal deformation of the same material exhibits microplastic event-size intermittency of truncated power-law type even when the same plastic volume as in nanoindentation is probed. Furthermore, we successfully test a previously proposed extreme-value statistics model that relates the average first critical stress to the shape and scale parameter of the underlying Weibull distribution.more » « less
-
Motivated by the observation of the storage of excess elastic free energy -- prestress in cross linked semiflexible filament networks, we consider the problem of the conformational statistics of a single semiflexible polymer in a quenched random potential. The random potential, which represents the effect of cross linking to other filaments is assumed to have a finite correlation length and mean strength. We examine the statistical distribution of curvature in the limit that the filaments are much shorter than their thermal persistence length. We compare our theoretical predictions to finite element Brownian dynamics simulations. Lastly we comment on the validity of replica field techniques in addressing these questions.more » « less
-
ABSTRACT A random algebraic graph is defined by a group with a uniform distribution over it and a connection with expectation satisfying . The random graph with vertex set is formed as follows. First, independent variables are sampled uniformly from . Then, vertices are connected with probability . This model captures random geometric graphs over the sphere, torus, and hypercube; certain instances of the stochastic block model; and random subgraphs of Cayley graphs. The main question of interest to the current paper is: when is a random algebraic graph statistically and/or computationally distinguishable from ? Our results fall into two categories. (1) Geometric. We focus on the case and use Fourier‐analytic tools. We match and extend the following results from the prior literature: For hard threshold connections, we match for , and for ‐Lipschitz connections we extend the results of when to the non‐monotone setting. (2) Algebraic. We provide evidence for an exponential statistical‐computational gap. Consider any finite group and let be a set of elements formed by including each set of the form independently with probability Let be the distribution of random graphs formed by taking a uniformly random induced subgraph of size of the Cayley graph . Then, and are statistically indistinguishable with high probability over if and only if . However, low‐degree polynomial tests fail to distinguish and with high probability over whenmore » « less