skip to main content


Title: Modeling of rock inhomogeneity and anisotropy by explicit and implicit representation of microcracks
Fracture patterns experienced under a dynamic uniaxial compressive load are highly sensitive to rock microstructural defects due to its brittleness and the absence of macroscopic stress concentration points. We propose two different approaches for modeling rock microstructural defects and inhomogeneity. In the explicit realization approach, microcracks with certain statistics are incorporated in the computational domain. In the implicit realization approach, fracture strength values are sampled using a Weibull probability distribution. We use the Mohr-Coulomb failure criterion to define an effective stress in the context of an interfacial damage model. This model predicts crack propagation at angles ±ɸch = ±(45 − ɸ/2) relative to the direction of compressive load, where ɸ is the friction angle. By using appropriate models for fracture strength anisotropy, we demonstrate the interaction of rock weakest plane and ɸch. Numerical results demonstrate the greater effect of strength anisotropy on fracture pattern when an explicit approach is employed. In addition, the density of fractures increases as the angle of the weakest planes approaches ±ɸch. The fracture simulations are performed by an h-adaptive asynchronous spacetime discontinuous Galerkin (aSDG) method that can accommodate crack propagation in any directions.  more » « less
Award ID(s):
1725555
NSF-PAR ID:
10117623
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Proceeding 52th U.S. Rock Mechanics/Geomechanics Symposium
Page Range / eLocation ID:
ARMA-DFNE-18-1094
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. SUMMARY

    A better understanding of damage accumulation before dynamic failure events in geological material is essential to improve seismic hazard assessment. Previous research has demonstrated the sensitivity of seismic velocities to variations in crack geometry, with established evidence indicating that initial crack closure induces rapid changes in velocity. Our study extends these findings by investigating velocity changes by applying coda wave interferometry (CWI). We use an array of 16 piezoceramic transducers to send and record ultrasonic pulses and to determine changes in seismic velocity on intact and faulted Westerly granite samples. Velocity changes are determined from CWI and direct phase arrivals. This study consists of three sets of experiments designed to characterize variations in seismic velocity under various initial and boundary conditions. The first set of experiments tracks velocity changes during hydrostatic compression from 2 and 191 MPa in intact Westerly granite samples. The second set of experiments focuses on saw-cut samples with different roughness and examines the effects of confining pressure increase from 2 to 120 MPa. The dynamic formation of a fracture and the preceding damage accumulation is the focus of the third type of experiment, during which we fractured an initially intact rock sample by increasing the differential stress up to 780 MPa while keeping the sample confined at 75 MPa. The tests show that: (i) The velocity change for rough saw cut samples suggests that the changes in bulk material properties have a more pronounced influence than fault surface apertures or roughness. (ii) Seismic velocities demonstrate higher sensitivity to damage accumulation under increasing differential stress than macroscopic measurements. Axial stress measured by an external load cell deviates from linearity around two-third through the experiment at a stress level of 290 MPa higher than during the initial drop in seismic velocities. (iii) Direct waves exhibit strong anisotropy with increasing differential stress and accumulating damage before rock fracture. Coda waves, on the other hand, effectively average over elastic wave propagation for both fast and slow directions, and the resulting velocity estimates show little evidence for anisotropy. The results demonstrate the sensitivity of seismic velocity to damage evolution at various boundary conditions and progressive microcrack generation with long lead times before dynamic fracture.

     
    more » « less
  2. Fracture in rock as a heterogeneous brittle material, having significant inherent randomness, requires including probabilistic considerations at different scales. Crack growth in rocks is generally associated with complex features such as crack path oscillations, microcrack and crack branching events. Two methods will be presented to address rock inhomogeneity and anisotropy. First, microcracks are explicitly realized in a domain based on specific statistics of crack length and location. Second, a statistical model is used to implicitly represent an inhomogeneous field for fracture strength. Both approaches can be used for rocks in which the natural fractures are oriented in a specific angle, i.e. an aspect for modeling bedding planes in sedimentary rocks. 
    more » « less
  3. Realistic fracture simulations in rock as a heterogeneous brittle material with significant inherent ran- domness require the use of models that incorporate its inhomogeneities and statistical variability. The high dependence of their fracture progress on microstructural defects results in wide scatter in their ultimate strength and the so-called size effect. This paper proposes an approach based on statistical volume elements (SVEs) to characterize rock fracture strength at the mesoscale. The use of SVEs ensures that the material randomness is maintained upon averaging of microscale features. Because the fracture strength varies not just spatially, but also by the angle of loading, this work includes angular variability to properly model a heterogeneous rock domain. Two different microcrack distributions, one angularly uniform and one angularly biased towards a specific angle, are used to show that implementing angle into the random field provides the most realistic fracture simulation. An adaptive asynchronous spacetime discontinuous Galerkin (aSDG) finite element method is used to perform the dynamic fracture simulations. 
    more » « less
  4. Realistic fracture simulations in rock as a heterogeneous brittle material with significant inherent randomness require the use of models that incorporate its inhomogeneities and statistical variability. The high dependence of their fracture progress on microstructural defects results in wide scatter in their ultimate strength and the so-called size effect. This paper proposes an approach based on statistical volume elements (SVEs) to characterize rock fracture strength at the mesoscale. The use of SVEs ensures that the material randomness is maintained upon averaging of microscale features. Because the fracture strength varies not just spatially, but also by the angle of loading, this work includes angular variability to properly model a heterogeneous rock domain. Two different microcrack distributions, one angularly uniform and one angularly biased towards a specific angle, are used to show that implementing angle into the random field provides the most realistic fracture simulation. An adaptive asynchronous spacetime discontinuous Galerkin (aSDG) finite element method is used to perform the dynamic fracture simulations. 
    more » « less
  5. The formation of burrs is among the most significant factors affecting quality and productivity in machining. Burrs are a negative byproduct of machining processes that are difficult to avoid because of a limited understanding of the complex burr formation mechanisms in relation to cutting conditions, including both process parameters and tool condition. Thus, the objective of this work was to characterize burr formation under finish machining conditions via a high-speed, high-resolution in-situ experimental method. Various parameters pertaining to burr geometry such as height, thickness, and initial negative shear angle were measured both during and after cutting. Results showed that varying the conditions of uncut chip thickness, tool-wear, and cutting speed all have a significant effect on burr formation, although certain burr metrics were found to be insensitive with respect to different process conditions because the difference was statistically insignificant. This study provides new insights into the relationships between the workpiece material’s microstructure, machining parameters, and tool condition on both crack formation and propagation/plasticity during burr formation. Using digital image correlation (DIC) and a physics-based process model not previously utilized for burr formation analysis, the displacement and corresponding flow stress were calculated at the exit burr root location. This novel semi-analytical approach revealed that the normalized stress at the exit burr root was approximately equal to the flow stress for a variety of different conditions, indicating the potential for model-based prediction of burr formation mechanics. Finally, this study investigates factors that influence fracture evolution during exit burr formation. It was found that negative exit burrs are a direct result of high strain rate and high uncut chip thickness, which was expected, but also a microstructural size effect and a tool-wear effect, neither of which have been previously reported. By harnessing ultra-high-speed imaging and advanced optical microscopy techniques, this manuscript deals with the fundamentals of burr formation, including new insights into material response at the grain-scale to the loads imposed with both sharp and worn tools. 
    more » « less