Abstract Evolutionary biologists characterize macroevolutionary trends of phenotypic change across the tree of life using phylogenetic comparative methods. However, within‐species variation can complicate such investigations. For this reason, procedures for incorporating nonstructured (random) intraspecific variation have been developed.Likewise, evolutionary biologists seek to understand microevolutionary patterns of phenotypic variation within species, such as sex‐specific differences or allometric trends. Additionally, there is a desire to compare such within‐species patterns across taxa, but current analytical approaches cannot be used to interrogate within‐species patterns while simultaneously accounting for phylogenetic non‐independence. Consequently, deciphering how intraspecific trends evolve remains a challenge.Here we introduce an extended phylogenetic generalized least squares (E‐PGLS) procedure which facilitates comparisons of within‐species patterns across species while simultaneously accounting for phylogenetic non‐independence.Our method uses an expanded phylogenetic covariance matrix, a hierarchical linear model, and permutation methods to obtain empirical sampling distributions and effect sizes for model effects that can evaluate differences in intraspecific trends across species for both univariate and multivariate data, while conditioning them on the phylogeny.The method has appropriate statistical properties for both balanced and imbalanced data. Additionally, the procedure obtains evolutionary covariance estimates that reflect those from existing approaches for nonstructured intraspecific variation. Importantly, E‐PGLS can detect differences in structured (i.e. microevolutionary) intraspecific patterns across species when such trends are present. Thus, E‐PGLS extends the reach of phylogenetic comparative methods into the intraspecific comparative realm, by providing the ability to compare within‐species trends across species while simultaneously accounting for shared evolutionary history.
more »
« less
Identifying direct and indirect associations among traits by merging phylogenetic comparative methods and structural equation models
Abstract Traits underlie organismal responses to their environment and are essential to predict community responses to environmental conditions under global change. Species differ in life‐history traits, morphometrics, diet type, reproductive characteristics and habitat utilization.Trait associations are widely analysed using phylogenetic comparative methods (PCM) to account for correlations among related species. Similarly, traits are measured for some but not all species, and missing continuous traits (e.g. growth rate) can be imputed using ‘phylogenetic trait imputation’ (PTI), based on evolutionary relatedness and trait covariance. However, PTI has not been available for categorical traits, and estimating covariance among traits without ecological constraints risks inferring implausible evolutionary mechanisms.Here, we extend previous PCM and PTI methods by (1) specifying covariance among traits as a structural equation model (SEM), and (2) incorporating associations among both continuous and categorical traits. Fitting a SEM replaces the covariance among traits with a set of linear path coefficients specifying potential evolutionary mechanisms. Estimated parameters then represent regression slopes (i.e. the average change in trait Y given an exogenous change in trait X) that can be used to calculate both direct effects (X impacts Y) and indirect effects (X impacts Z and Z impacts Y).We demonstrate phylogenetic structural‐equation mixed‐trait imputation using 33 variables representing life history, reproductive, morphological, and behavioural traits for all >32,000 described fishes worldwide. SEM coefficients suggest that one degree Celsius increase in habitat is associated with an average 3.5% increase in natural mortality (including a 1.4% indirect impact that acts via temperature effects on the growth coefficient), and an average 3.0% decrease in fecundity (via indirect impacts on maximum age and length). Cross‐validation indicates that the model explains 54%–89% of variance for withheld measurements of continuous traits and has an area under the receiver‐operator‐characteristics curve of 0.86–0.99 for categorical traits.We use imputed traits to classify all fishes into life‐history types, and confirm a phylogenetic signal in three dominant life‐history strategies in fishes. PTI using phylogenetic SEMs ensures that estimated parameters are interpretable as regression slopes, such that the inferred evolutionary relationships can be compared with long‐term evolutionary and rearing experiments.
more »
« less
- Award ID(s):
- 2109411
- PAR ID:
- 10529297
- Publisher / Repository:
- John Wiley & Sons Ltd
- Date Published:
- Journal Name:
- Methods in Ecology and Evolution
- Volume:
- 14
- Issue:
- 5
- ISSN:
- 2041-210X
- Page Range / eLocation ID:
- 1259 to 1275
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Summary Evolutionary history plays a key role driving patterns of trait variation across plant species. For scaling and modeling purposes, grass species are typically organized into C3vs C4plant functional types (PFTs). Plant functional type groupings may obscure important functional differences among species. Rather, grouping grasses by evolutionary lineage may better represent grass functional diversity.We measured 11 structural and physiological traitsin situfrom 75 grass species within the North American tallgrass prairie. We tested whether traits differed significantly among photosynthetic pathways or lineages (tribe) in annual and perennial grass species.Critically, we found evidence that grass traits varied among lineages, including independent origins of C4photosynthesis. Using a rigorous model selection approach, tribe was included in the top models for five of nine traits for perennial species. Tribes were separable in a multivariate and phylogenetically controlled analysis of traits, owing to coordination of important structural and ecophysiological characteristics.Our findings suggest grouping grass species by photosynthetic pathway overlooks variation in several functional traits, particularly for C4species. These results indicate that further assessment of lineage‐based differences at other sites and across other grass species distributions may improve representation of C4species in trait comparison analyses and modeling investigations.more » « less
-
Abstract Pollen protein content has been demonstrated to be an essential nutritional component for bees and thus important in mediating plant–pollinator interactions. However, little is known on the drivers and consequences of among‐species variation in pollen protein content and how this can impact male and female reproductive success across plant species. Among‐species variation in resources allocated to pollen nutrition could further be constrained by life‐history strategies (e.g. survival‐reproduction trade‐offs) or evolutionary history.Here, we surveyed pollen protein content for 29 species within a diverse co‐flowering community and evaluated the effect of pollen protein on male and female reproductive success. We also tested the role of life history (annuals vs. perennials) and phylogeny in mediating differences in resource allocation to pollen nutrition.We found that pollen protein content influences components of male (bee visitor abundance and pollen dispersal) but not female (conspecific pollen deposition and pollen tube growth) reproductive success, suggesting this trait affects plants only via male function. This sex‐specific effect further suggests the potential for sexual conflicts driven by differential investment on this trait. We found no phylogenetic signal on pollen protein content. However, pollen protein content was higher in annual compared to perennial species suggesting survival versus reproduction trade‐offs also contribute to variation in pollen protein at the community level.Our study underscores the importance of understanding the ecological and evolutionary drivers of pollen protein content across plant species. Our results further suggest the existence of sexual conflicts and ecological trade‐offs mediated by differential investment in pollen nutritional quality, with important implications for community assembly and the structure of plant–pollinator interactions. Read the freePlain Language Summaryfor this article on the Journal blog.more » « less
-
Abstract Intraspecific trait variation (ITV) is an increasingly important aspect of biodiversity and can provide a more complete perspective on how abiotic and biotic processes affect individuals, species' niches and ultimately community‐level structure than traditional uses of trait means. Body size serves as a proxy for a suite of traits that govern species' niches. Distributions of co‐occurring species body sizes can inform niche overlap, relate to species richness and uncover mechanistic drivers of diversity.We leveraged individual‐level body size (length) in freshwater fishes and environmental data from the National Ecological Observatory Network (NEON) for 17 lakes and streams in the contiguous United States to explore how abiotic and biotic factors influence fish species richness and trait distributions of body size. We calculated key abiotic (climate, productivity, land use) and biotic (phylogenetic diversity, trait diversity, community‐level overlap of trait probability densities) variables for each site to test hypotheses about drivers of ITV in body size and fish diversity.Abiotic variables were consistently important in explaining variation in fish body size and species richness across sites. In particular, productivity (as chlorophyll) was a key variable in explaining variation in body size trait richness, evenness and divergence, as well as species richness.This study yields new insights into continental‐scale patterns of freshwater fishes, possible only by leveraging the paired high frequency, in situ abiotic data and individual‐level traits collected by NEON.more » « less
-
Abstract Predator and prey traits are important determinants of the outcomes of trophic interactions. In turn, the outcomes of trophic interactions shape predator and prey trait evolution. How species' traits respond to selection from trophic interactions depends crucially on whether and how heritable species' traits are and their genetic correlations. Of the many traits influencing the outcomes of trophic interactions, body size and movement traits have emerged as key traits. Yet, how these traits shape and are shaped by trophic interactions is unclear, as few studies have simultaneously measured the impacts of these traits on the outcomes of trophic interactions, their heritability, and their correlations within the same system.We used outcrossed lines of the ciliate protistParamecium caudatumfrom natural populations to examine variation in morphology and movement behaviour, the heritability of that variation, and its effects onParameciumsusceptibility to predation by the copepodMacrocyclops albidus.We found that theParameciumlines exhibited heritable variation in body size and movement traits. In contrast to expectations from allometric relationships, body size and movement speed showed little covariance among clonal lines. The proportion ofParameciumconsumed by copepods was positively associated withParameciumbody size and velocity but with an interaction such that greater velocities led to greater predation risk for large body‐sized paramecia but did not alter predation risk for smaller paramecia. The proportion of paramecia consumed was not related to copepod body size. These patterns of predation risk and heritable trait variation in paramecia suggest that copepod predation may act as a selective force operating independently on movement and body size and generating the strongest selection against large, high‐velocity paramecia.Our results illustrate how ecology and genetics can shape potential natural selection on prey traits through the outcomes of trophic interactions. Further simultaneous measures of predation outcomes, traits, and their quantitative genetics will provide insights into the evolutionary ecology of species interactions and their eco‐evolutionary consequences. Read the freePlain Language Summaryfor this article on the Journal blog.more » « less
An official website of the United States government

