skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Linear Optical Logical Bell State Measurements with Optimal Loss-Tolerance Threshold
Quantum threshold theorems impose hard limits on the hardware capabilities to process quantum information. We derive tight and fundamental upper bounds to loss-tolerance thresholds in different linear-optical quantum information processing settings through an adversarial framework, taking into account the intrinsically probabilistic nature of linear optical Bell measurements. For logical Bell state measurements—ubiquitous operations in photonic quantum information—we demonstrate analytically that linear optics can achieve the fundamental loss threshold imposed by the no-cloning theorem even though, following the work of Lee et al. [Phys. Rev. A 100, 052303 (2019)] the constraint was widely assumed to be stricter. We spotlight the assumptions of the latter publication and find their bound holds for a logical Bell measurement built from adaptive physical linear-optical Bell measurements. We also give an explicit even stricter bound for nonadaptive Bell measurements.  more » « less
Award ID(s):
2137953
PAR ID:
10529384
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
American Physical Society
Date Published:
Journal Name:
PRX Quantum
Volume:
4
Issue:
4
ISSN:
2691-3399
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We analyze the use of photonic links to enable large-scale fault-tolerant connectivity of locally error-corrected modules based on neutral atom arrays. Our approach makes use of recent theoretical results showing the robustness of surface codes to boundary noise and combines recent experimental advances in atom-array quantum computing with logical qubits with optical quantum networking techniques. We find the conditions for fault tolerance can be achieved with local two-qubit Rydberg gate and nonlocal Bell-pair errors below 1% and 10%, respectively, without requiring distillation or space-time overheads. Realizing the interconnects with a lens, a single optical cavity, or an array of cavities enables—with sufficient multiplexing—a Bell-pair generation rate in the 1–50 MHz range. When directly interfacing logical qubits, this rate translates to error-correction cycles in the 25–2000 kHz range, satisfying all requirements for fault tolerance and in the upper range fast enough for 100 kHz logical clock cycles. Published by the American Physical Society2025 
    more » « less
  2. A quantum transducer converts an input signal to an output probe at a distant frequency band while maintaining the quantum information with high fidelity, which is crucial for quantum networking and distributed quantum sensing and computing. In terms of microwave–optical quantum transduction, the state-of-the-art quantum transducers suffer low transduction efficiency from weak nonlinear coupling, wherein increasing pump power to enhance efficiency inevitably leads to thermal noise from heating. Moreover, we reveal that the efficiency-bandwidth product of a cavity electro-optical or electro-optomechanical transducer is fundamentally limited by pump power and nonlinear coupling coefficient, irrespective of cavity engineering efforts. To overcome this fundamental limit, we propose to noiselessly boost the transduction efficiency by consuming intraband entanglement (e.g., microwave–microwave or optical–optical entanglement in the case of microwave–optical transduction). Via a squeezer–coupler–antisqueezer sandwich structure, the protocol enhances the transduction efficiency to unity in the ideal lossless case, given an arbitrarily weak pump and nonlinear coupling. In practical cavity systems, our entanglement-assisted protocol surpasses the non-assisted fundamental limit of the efficiency-bandwidth product and reduces the threshold cooperativity for positive quantum capacity by a factor proportional to two-mode squeezing gain. Given a fixed cooperativity, our approach increases the broadband quantum capacity by orders of magnitude. The entanglement-assisted advantage is robust to ancilla loss and cavity detuning. 
    more » « less
  3. Entanglement is crucial to many quantum applications, including quantum information processing, quantum simulation, and quantum-enhanced sensing. Because of their rich internal structure and interactions, molecules have been proposed as a promising platform for quantum science. Deterministic entanglement of individually controlled molecules has nevertheless been a long-standing experimental challenge. We demonstrate on-demand entanglement of individually prepared molecules. Using the electric dipolar interaction between pairs of molecules prepared by using a reconfigurable optical tweezer array, we deterministically created Bell pairs of molecules. Our results demonstrate the key building blocks needed for quantum applications and may advance quantum-enhanced fundamental physics tests that use trapped molecules. 
    more » « less
  4. The probability estimation framework involves direct estimation of the probability of occurrences of outcomes conditioned on measurement settings and side information. It is a powerful tool for certifying randomness in quantum nonlocality experiments. In this paper, we present a self-contained proof of the asymptotic optimality of the method. Our approach refines earlier results to allow a better characterisation of optimal adversarial attacks on the protocol. We apply these results to the (2,2,2) Bell scenario, obtaining an analytic characterisation of the optimal adversarial attacks bound by no-signalling principles, while also demonstrating the asymptotic robustness of the PEF method to deviations from expected experimental behaviour. We also study extensions of the analysis to quantum-limited adversaries in the (2,2,2) Bell scenario and no-signalling adversaries in higher (n,m,k) Bell scenarios. 
    more » « less
  5. Self-testing has been established as a major approach for quantum device certification based on experimental statistics with minimal assumptions. However, despite more than 20 years of research effort, most of the self-testing protocols are restricted to spatial scenarios (Bell scenarios), without many temporal generalizations known. Under the scenario of sequential measurements performed on a single quantum system, semi-definite optimization-based techniques have been applied to bound sequential measurement inequalities. Building upon this formalism, we show that the optimizer matrix that saturates such sequential inequalities is unique and, moreover, this uniqueness is robust to small deviations from the quantum bound. Furthermore, we consider a generalized scenario in the presence of quantum channels and highlight analogies to the structure of Bell and sequential inequalities using the pseudo-density matrix formalism. These analogies allow us to show a practical use of maximal violations of sequential inequalities in the form of certification of quantum channels up to isometries. 
    more » « less