skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Overcoming the fundamental limit of quantum transduction via intraband entanglement
A quantum transducer converts an input signal to an output probe at a distant frequency band while maintaining the quantum information with high fidelity, which is crucial for quantum networking and distributed quantum sensing and computing. In terms of microwave–optical quantum transduction, the state-of-the-art quantum transducers suffer low transduction efficiency from weak nonlinear coupling, wherein increasing pump power to enhance efficiency inevitably leads to thermal noise from heating. Moreover, we reveal that the efficiency-bandwidth product of a cavity electro-optical or electro-optomechanical transducer is fundamentally limited by pump power and nonlinear coupling coefficient, irrespective of cavity engineering efforts. To overcome this fundamental limit, we propose to noiselessly boost the transduction efficiency by consuming intraband entanglement (e.g., microwave–microwave or optical–optical entanglement in the case of microwave–optical transduction). Via a squeezer–coupler–antisqueezer sandwich structure, the protocol enhances the transduction efficiency to unity in the ideal lossless case, given an arbitrarily weak pump and nonlinear coupling. In practical cavity systems, our entanglement-assisted protocol surpasses the non-assisted fundamental limit of the efficiency-bandwidth product and reduces the threshold cooperativity for positive quantum capacity by a factor proportional to two-mode squeezing gain. Given a fixed cooperativity, our approach increases the broadband quantum capacity by orders of magnitude. The entanglement-assisted advantage is robust to ancilla loss and cavity detuning.  more » « less
Award ID(s):
2326746 2240641
PAR ID:
10561488
Author(s) / Creator(s):
;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optica Quantum
Volume:
2
Issue:
6
ISSN:
2837-6714
Format(s):
Medium: X Size: Article No. 475
Size(s):
Article No. 475
Sponsoring Org:
National Science Foundation
More Like this
  1. Linking superconducting quantum devices to optical fibers via microwave-optical quantum transducers may enable large-scale quantum networks. For this application, transducers based on the Pockels electro-optic (EO) effect are promising for their direct conversion mechanism, high bandwidth, and potential for low-noise operation. However, previously demonstrated EO transducers require large optical pump power to overcome weak EO coupling and reach high efficiency. Here, we create an EO transducer in thin-film lithium niobate, a platform that provides low optical loss and strong EO coupling. We demonstrate on-chip transduction efficiencies of up toandof optical pump power. The transduction efficiency can be improved by further reducing the microwave resonator’s piezoelectric coupling to acoustic modes, increasing the optical resonator quality factor to previously demonstrated levels, and changing the electrode geometry for enhanced EO coupling. We expect that with further development, EO transducers in thin-film lithium niobate can achieve near-unity efficiency with low optical pump power. 
    more » « less
  2. Abstract Hybrid quantum systems are essential for the realization of distributed quantum networks. In particular, piezo-mechanics operating at typical superconducting qubit frequencies features low thermal excitations, and offers an appealing platform to bridge superconducting quantum processors and optical telecommunication channels. However, integrating superconducting and optomechanical elements at cryogenic temperatures with sufficiently strong interactions remains a tremendous challenge. Here, we report an integrated superconducting cavity piezo-optomechanical platform where 10 GHz phonons are resonantly coupled with photons in a superconducting cavity and a nanophotonic cavity at the same time. Taking advantage of the large piezo-mechanical cooperativity (Cem ~7) and the enhanced optomechanical coupling boosted by a pulsed optical pump, we demonstrate coherent interactions at cryogenic temperatures via the observation of efficient microwave-optical photon conversion. This hybrid interface makes a substantial step towards quantum communication at large scale, as well as novel explorations in microwave-optical photon entanglement and quantum sensing mediated by gigahertz phonons. 
    more » « less
  3. Interfacing electronics with optical fiber networks is key to the long-distance transfer of classical and quantum information. Piezo-optomechanical transducers enable such interfaces by using gigahertz-frequency acoustic vibrations as mediators for converting microwave photons to optical photons via the combination of optomechanical and piezoelectric interactions. However, despite successful demonstrations, efficient quantum transduction remains out of reach due to the challenges associated with hybrid material integration and increased loss from piezoelectric materials when operating in the quantum regime. Here, we demonstrate an alternative approach in which we actuate 5-GHz phonons in a conventional silicon-on-insulator platform. In our experiment, microwave photons resonantly drive a phononic crystal oscillator via the electrostatic force realized in a charge-biased narrow-gap capacitor. The mechanical vibrations are subsequently transferred via a phonon waveguide to an optomechanical cavity, where they transform into optical photons in the sideband of a pump laser field. Operating at room temperature and atmospheric pressure, we measure a microwave-to-optical photon conversion efficiency of 1.72±0.14×10−7in a 3.3 MHz bandwidth. Our results mark a stepping stone towards quantum transduction with integrated devices made from crystalline silicon, which promise efficient high-bandwidth operation and integration with superconducting qubits. Additionally, the lack of need for piezoelectricity or other intrinsic nonlinearities makes our approach applicable to a wide range of materials for potential applications beyond quantum technologies. 
    more » « less
  4. Abstract The nature of dark matter is unknown and calls for a systematical search. For axion dark matter, such a search relies on finding feeble random noise arising from the weak coupling between dark matter and microwave haloscopes. We model such process as a quantum channel and derive the fundamental precision limit of noise sensing. An entanglement-assisted strategy based on two-mode squeezed vacuum is thereby demonstrated optimal, while the optimality of a single-mode squeezed vacuum is found limited to the lossless case. We propose a “nulling” measurement (squeezing and photon counting) to achieve the optimal performances. In terms of the scan rate, even with 20-decibel of strength, single-mode squeezing still underperforms the vacuum limit which is achieved by photon counting on vacuum input; while the two-mode squeezed vacuum provides large and close-to-optimum advantage over the vacuum limit, thus more exotic quantum resources are no longer required. Our results highlight the necessity of entanglement assistance and microwave photon counting in dark matter search. 
    more » « less
  5. Abstract Deterministic positioning single site-controlled high symmetric InGaAs quantum dots (QDs) in (111)B-oriented GaAs photonic crystal cavities with nanometer-scale accuracy provides an idea component for building integrated quantum photonic circuits. However, it has been a long-standing challenge of improving cavityQ-factors in such systems. Here, by optimizing the trade-off between the cavity loss and QD spectral quality, we demonstrate our site-controlled QD-nanocavity system operating in the intermediate coupling regime mediated by phonon scattering, with the dynamic coexistence of strong and weak coupling. The cavity-exciton detuning-dependent micro-photoluminescence spectrum reveals concurrence of a trend of exciton-polariton mode avoided crossing, as a signature of Rabi doublet of the strongly coupled system. Meanwhile, a trend of keeping constant or slight blue shift of coupled exciton–cavity mode(CM) energy across zero-detuning is ascribed to the formation of collective states mediated by phonon-assisted coupling, and their rare partial out-of-synchronization linewidth-narrowing is linked to their coexisting strong-weak coupling regime. We further reveal the pump power-dependent anti-bunching photon statistical dynamics of this coexisting strong-weak coupled system and the optical features of strongly confined exciton-polaritons, and dark-exciton-like states. These observations demonstrate the potential capabilities of site-controlled QD-cavity systems as deterministic quantum nodes for on-chip quantum information processing and provide guidelines for future device optimization for achieving the strong coupling regime. 
    more » « less