Title: Embed systemic equity throughout industrial ecology applications: How to address machine learning unfairness and bias
Abstract Recent calls have been made for equity tools and frameworks to be integrated throughout the research and design life cycle —from conception to implementation—with an emphasis on reducing inequity in artificial intelligence (AI) and machine learning (ML) applications. Simply stating that equity should be integrated throughout, however, leaves much to be desired as industrial ecology (IE) researchers, practitioners, and decision‐makers attempt to employ equitable practices. In this forum piece, we use a critical review approach to explain how socioecological inequities emerge in ML applications across their life cycle stages by leveraging the food system. We exemplify the use of a comprehensive questionnaire to delineate unfair ML bias across data bias, algorithmic bias, and selection and deployment bias categories. Finally, we provide consolidated guidance and tailored strategies to help address AI/ML unfair bias and inequity in IE applications. Specifically, the guidance and tools help to address sensitivity, reliability, and uncertainty challenges. There is also discussion on how bias and inequity in AI/ML affect other IE research and design domains, besides the food system—such as living labs and circularity. We conclude with an explanation of the future directions IE should take to address unfair bias and inequity in AI/ML. Last, we call for systemic equity to be embedded throughout IE applications to fundamentally understand domain‐specific socioecological inequities, identify potential unfairness in ML, and select mitigation strategies in a manner that translates across different research domains. more »« less
Kim, C; Gnesdilow, D; Passonneau, RJ; Puntambekar, S
(, Proceedings of the 4th Annual Meeting of the International Society of the Learning Sciences 2024)
Hoadley, C; Wang, XC
(Ed.)
The present study examined teachers’ conceptualization of the role of AI in addressing inequity. Grounded in speculative design and education, we examined eight secondary public teachers’ thinking about AI in teaching and learning that may go beyond present horizons. Data were collected from individual interviews. Findings suggest that not only equity consciousness but also present engagement in a context of inequities were crucial to future dreaming of AI that does not harm but improve equity.
Zhai, Xiaoming; Nehm, Ross H.
(, Journal of Research in Science Teaching)
Abstract In response to Li, Reigh, He, and Miller's commentary,Can we and should we use artificial intelligence for formative assessment in science, we argue that artificial intelligence (AI) is already being widely employed in formative assessment across various educational contexts. While agreeing with Li et al.'s call for further studies on equity issues related to AI, we emphasize the need for science educators to adapt to the AI revolution that has outpaced the research community. We challenge the somewhat restrictive view of formative assessment presented by Li et al., highlighting the significant contributions of AI in providing formative feedback to students, assisting teachers in assessment practices, and aiding in instructional decisions. We contend that AI‐generated scores should not be equated with the entirety of formative assessment practice; no single assessment tool can capture all aspects of student thinking and backgrounds. We address concerns raised by Li et al. regarding AI bias and emphasize the importance of empirical testing and evidence‐based arguments in referring to bias. We assert that AI‐based formative assessment does not necessarily lead to inequity and can, in fact, contribute to more equitable educational experiences. Furthermore, we discuss how AI can facilitate the diversification of representational modalities in assessment practices and highlight the potential benefits of AI in saving teachers’ time and providing them with valuable assessment information. We call for a shift in perspective, from viewing AI as a problem to be solved to recognizing its potential as a collaborative tool in education. We emphasize the need for future research to focus on the effective integration of AI in classrooms, teacher education, and the development of AI systems that can adapt to diverse teaching and learning contexts. We conclude by underlining the importance of addressing AI bias, understanding its implications, and developing guidelines for best practices in AI‐based formative assessment.
McGovern, Amy; Bostrom, Ann; McGraw, Marie; Chase, Randy J; Gagne, David John; Ebert-Uphoff, Imme; Musgrave, Kate D; Schumacher, Andrea
(, Bulletin of the American Meteorological Society)
Abstract Artificial intelligence (AI) can be used to improve performance across a wide range of Earth system prediction tasks. As with any application of AI, it is important for AI to be developed in an ethical and responsible manner to minimize bias and other effects. In this work, we extend our previous work demonstrating how AI can go wrong with weather and climate applications by presenting a categorization of bias for AI in the Earth sciences. This categorization can assist AI developers to identify potential biases that can affect their model throughout the AI development life cycle. We highlight examples from a variety of Earth system prediction tasks of each category of bias.
Advances in computer science and data-analytic methods are driving a new era in mental health research and application. Artificial intelligence (AI) technologies hold the potential to enhance the assessment, diagnosis, and treatment of people experiencing mental health problems and to increase the reach and impact of mental health care. However, AI applications will not mitigate mental health disparities if they are built from historical data that reflect underlying social biases and inequities. AI models biased against sensitive classes could reinforce and even perpetuate existing inequities if these models create legacies that differentially impact who is diagnosed and treated, and how effectively. The current article reviews the health-equity implications of applying AI to mental health problems, outlines state-of-the-art methods for assessing and mitigating algorithmic bias, and presents a call to action to guide the development of fair-aware AI in psychological science.
Purpose The purpose of this paper is to offer a critical analysis of talent acquisition software and its potential for fostering equity in the hiring process for underrepresented IT professionals. The under-representation of women, African-American and Latinx professionals in the IT workforce is a longstanding issue that contributes to and is impacted by algorithmic bias. Design/methodology/approach Sources of algorithmic bias in talent acquisition software are presented. Feminist design thinking is presented as a theoretical lens for mitigating algorithmic bias. Findings Data are just one tool for recruiters to use; human expertise is still necessary. Even well-intentioned algorithms are not neutral and should be audited for morally and legally unacceptable decisions. Feminist design thinking provides a theoretical framework for considering equity in the hiring decisions made by talent acquisition systems and their users. Social implications This research implies that algorithms may serve to codify deep-seated biases, making IT work environments just as homogeneous as they are currently. If bias exists in talent acquisition software, the potential for propagating inequity and harm is far more significant and widespread due to the homogeneity of the specialists creating artificial intelligence (AI) systems. Originality/value This work uses equity as a central concept for considering algorithmic bias in talent acquisition. Feminist design thinking provides a framework for fostering a richer understanding of what fairness means and evaluating how AI software might impact marginalized populations.
@article{osti_10529435,
place = {Country unknown/Code not available},
title = {Embed systemic equity throughout industrial ecology applications: How to address machine learning unfairness and bias},
url = {https://par.nsf.gov/biblio/10529435},
DOI = {10.1111/jiec.13509},
abstractNote = {Abstract Recent calls have been made for equity tools and frameworks to be integrated throughout the research and design life cycle —from conception to implementation—with an emphasis on reducing inequity in artificial intelligence (AI) and machine learning (ML) applications. Simply stating that equity should be integrated throughout, however, leaves much to be desired as industrial ecology (IE) researchers, practitioners, and decision‐makers attempt to employ equitable practices. In this forum piece, we use a critical review approach to explain how socioecological inequities emerge in ML applications across their life cycle stages by leveraging the food system. We exemplify the use of a comprehensive questionnaire to delineate unfair ML bias across data bias, algorithmic bias, and selection and deployment bias categories. Finally, we provide consolidated guidance and tailored strategies to help address AI/ML unfair bias and inequity in IE applications. Specifically, the guidance and tools help to address sensitivity, reliability, and uncertainty challenges. There is also discussion on how bias and inequity in AI/ML affect other IE research and design domains, besides the food system—such as living labs and circularity. We conclude with an explanation of the future directions IE should take to address unfair bias and inequity in AI/ML. Last, we call for systemic equity to be embedded throughout IE applications to fundamentally understand domain‐specific socioecological inequities, identify potential unfairness in ML, and select mitigation strategies in a manner that translates across different research domains.},
journal = {Journal of Industrial Ecology},
volume = {28},
number = {6},
publisher = {Wiley-Blackwell},
author = {Bozeman, III, Joe_F and Hollauer, Catharina and Ramshankar, Arjun_Thangaraj and Nakkasunchi, Shalini and Jambeck, Jenna and Hicks, Andrea and Bilec, Melissa and McCauley, Darren and Heidrich, Oliver},
}
Warning: Leaving National Science Foundation Website
You are now leaving the National Science Foundation website to go to a non-government website.
Website:
NSF takes no responsibility for and exercises no control over the views expressed or the accuracy of
the information contained on this site. Also be aware that NSF's privacy policy does not apply to this site.