Abstract The dwarf lemurs (Cheirogaleusspp.) of Madagascar are the only obligate hibernators among primates. Despite century‐old field accounts of seasonal lethargy, and more recent evidence of hibernation in the western fat‐tailed dwarf lemur (Cheirogaleus medius), inducing hibernation in captivity remained elusive for decades. This included the Duke Lemur Center (DLC), which maintains fat‐tailed dwarf lemurs and has produced sporadic research on reproduction and metabolism. With cumulative knowledge from the field, a newly robust colony, and better infrastructure, we recently induced hibernation in DLC dwarf lemurs. We describe two follow‐up experiments in subsequent years. First, we show that dwarf lemurs under stable cold conditions (13°C) with available food continued to eat daily, expressed shallower and shorter torpor bouts, and had a modified gut microbiome compared to peers without food. Second, we demonstrate that dwarf lemurs under fluctuating temperatures (12–30°C) can passively rewarm daily, which was associated with altered patterns of fat depletion and reduced oxidative stress. Despite the limitations of working with endangered primates, we highlight the promise of studying hibernation in captive dwarf lemurs. Follow‐up studies on genomics and epigenetics, metabolism, and endocrinology could have relevance across multidisciplinary fields, from biomedicine to evolutionary biology, and conservation.
more »
« less
Seasonal variation in glucose and insulin is modulated by food and temperature conditions in a hibernating primate
Feast-fast cycles allow animals to live in seasonal environments by promoting fat storage when food is plentiful and lipolysis when food is scarce. Fat-storing hibernators have mastered this cycle over a circannual schedule, by undergoing extreme fattening to stockpile fuel for the ensuing hibernation season. Insulin is intrinsic to carbohydrate and lipid metabolism and is central to regulating feast-fast cycles in mammalian hibernators. Here, we examine glucose and insulin dynamics across the feast-fast cycle in fat-tailed dwarf lemurs, the only obligate hibernator among primates. Unlike cold-adapted hibernators, dwarf lemurs inhabit tropical forests in Madagascar and hibernate under various temperature conditions. Using the captive colony at the Duke Lemur Center, we determined fasting glucose and insulin, and glucose tolerance, in dwarf lemurs across seasons. During the lean season, we maintained dwarf lemurs under stable warm, stable cold, or fluctuating ambient temperatures that variably included food provisioning or deprivation. Overall, we find that dwarf lemurs can show signatures of reversible, lean-season insulin resistance. During the fattening season prior to hibernation, dwarf lemurs had low glucose, insulin, and HOMA-IR despite consuming high-sugar diets. In the active season after hibernation, glucose, insulin, HOMA-IR, and glucose tolerance all increased, highlighting the metabolic processes at play during periods of weight gainversusweight loss. During the lean season, glucose remained low, but insulin and HOMA-IR increased, particularly in animals kept under warm conditions with daily food. Moreover, these lemurs had the greatest glucose intolerance in our study and had average HOMA-IR values consistent with insulin resistance (5.49), while those without food under cold (1.95) or fluctuating (1.17) temperatures did not. Remarkably low insulin in dwarf lemurs under fluctuating temperatures raises new questions about lipid metabolism when animals can passively warm and cool rather than undergo sporadic arousals. Our results underscore that seasonal changes in insulin and glucose tolerance are likely hallmarks of hibernating mammals. Because dwarf lemurs can hibernate under a range of conditions in captivity, they are an emerging model for primate metabolic flexibility with implications for human health.
more »
« less
- Award ID(s):
- 2314898
- PAR ID:
- 10529556
- Publisher / Repository:
- Frontiers in Physiology
- Date Published:
- Journal Name:
- Frontiers in Physiology
- Volume:
- 14
- ISSN:
- 1664-042X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Telomeres, the protective ends of chromosomes, progressively shorten due to incomplete mitotic replication and oxidative stress. In some organisms, transient telomere elongation may occur, for example, when individuals have an energy surplus to counter stress-induced life events or when elongating telomeres is a last chance to increase fitness. Mammalian hibernators are good models to test telomere dynamics, as they cycle between prolonged bouts of metabolic depression (torpor) punctuated by short surges to euthermia (arousals). We studied captive fat-tailed dwarf lemurs (Cheirogaleus medius), strepsirrhine primate hibernators, that were food-deprived (n= 8) or fed daily (n= 7) during hibernation (4.5 months). We compared telomere lengths, assayed via qPCR from oral swabs, at five strategic time points that span a full year. Food-deprived subjects underwent multi-day torpor/arousal cycles, lost considerable body mass and elongated telomeres during hibernation but shortened them upon emergence. In contrast, food-provisioned subjects ate daily, lost body mass more slowly, underwent shallower and shorter torpor bouts and experienced little change in telomere lengths during the same periods. Our results highlight a complex relationship between telomere dynamics, energy balance and torpor expression. Further investigation is warranted to elucidate the regulation of protective mechanisms in these primate hibernators.more » « less
-
null (Ed.)Thriving in times of resource scarcity requires an incredible flexibility of behavioral, physiological, cellular, and molecular functions that must change within a relatively short time. Hibernation is a collection of physiological strategies that allows animals to inhabit inhospitable environments, where they experience extreme thermal challenges and scarcity of food and water. Many different kinds of animals employ hibernation, and there is a spectrum of hibernation phenotypes. Here, we focus on obligatory mammalian hibernators to identify the unique challenges they face and the adaptations that allow hibernators to overcome them. This includes the cellular and molecular strategies used to combat low environmental and body temperatures and lack of food and water. We discuss metabolic, neuronal, and hormonal cues that regulate hibernation and how they are thought to be coordinated by internal clocks. Last, we touch on questions that are left to be addressed in the field of hibernation research. Studies from the last century and more recent work reveal that hibernation is not simply a passive reduction in body temperature and vital parameters but rather an active process seasonally regulated at the molecular, cellular, and organismal levels.more » « less
-
Hibernation in bears involves a suite of metabolical and physiological changes, including the onset of insulin resistance, that are driven in part by sweeping changes in gene expression in multiple tissues. Feeding bears glucose during hibernation partially restores active season physiological phenotypes, including partial resensitization to insulin, but the molecular mechanisms underlying this transition remain poorly understood. Here, we analyze tissue-level gene expression in adipose, liver, and muscle to identify genes that respond to midhibernation glucose feeding and thus potentially drive postfeeding metabolical and physiological shifts. We show that midhibernation feeding stimulates differential expression in all analyzed tissues of hibernating bears and that a subset of these genes responds specifically by shifting expression toward levels typical of the active season. Inferences of upstream regulatory molecules potentially driving these postfeeding responses implicate peroxisome proliferator-activated receptor gamma (PPARG) and other known regulators of insulin sensitivity, providing new insight into high-level regulatory mechanisms involved in shifting metabolic phenotypes between hibernation and active states.more » « less
-
Mammalian hibernators survive prolonged periods of cold and resource scarcity by temporarily modulating normal physiological functions, but the mechanisms underlying these adaptations are poorly understood. The hibernation cycle of thirteen-lined ground squirrels (Ictidomys tridecemlineatus) lasts for 5–7 months and comprises weeks of hypometabolic, hypothermic torpor interspersed with 24–48-h periods of an active-like interbout arousal (IBA) state. We show that ground squirrels, who endure the entire hibernation season without food, have negligible hunger during IBAs. These squirrels exhibit reversible inhibition of the hypothalamic feeding center, such that hypothalamic arcuate nucleus neurons exhibit reduced sensitivity to the orexigenic and anorexigenic effects of ghrelin and leptin, respectively. However, hypothalamic infusion of thyroid hormone during an IBA is sufficient to rescue hibernation anorexia. Our results reveal that thyroid hormone deficiency underlies hibernation anorexia and demonstrate the functional flexibility of the hypothalamic feeding center.more » « less
An official website of the United States government

