skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Award ID contains: 2314898

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Zika and dengue virus nonstructural protein 5 antagonism of STAT2, a critical interferon signaling transcription factor, to suppress the host interferon response is required for viremia and pathogenesis in a vertebrate host. This affects viral species tropism, as mouse STAT2 resistance renders only immunocompromised or humanized STAT2 mice infectable. Here, we explore how STAT2 evolution impacts antagonism. By measuring the susceptibility of 38 diverse STAT2 proteins, we demonstrate that resistance arose numerous times in mammalian evolution. In four species, resistance requires distinct sets of multiple amino acid changes that often individually disrupt STAT2 signaling. This reflects an evolutionary ridge where progressive resistance is balanced by the need to maintain STAT2 function. Furthermore, resistance may come with a fitness cost, as resistance that arose early in lemur evolution was subsequently lost in some lemur lineages. These findings underscore that while it is possible to evolve resistance to antagonism, complex evolutionary trajectories are required to avoid detrimental host fitness consequences.

     
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  2. Fossils from the Fayum Depression, Egypt, are crucial for understanding anthropoid evolution due to the abundance of taxa and the time interval they represent (late Eocene to early Oligocene). Dietary and foraging behavioral interpretations suggest fruits were their dominant food source, although hard foods (e.g., seeds and nuts) and leaves could have been important dietary components for particular groups. In this study, we compare dental chipping patterns in five Fayum primate genera with chipping data for extant primates, to assess potential hard object feeding in early anthropoids.

    Materials and Methods

    Original specimens were studied (Aegyptopithecus:n = 100 teeth;Parapithecus:n = 72,Propliopithecus:n = 99,Apidium:n = 82;Catopithecus:n = 68); with the number, severity, and position of chips recorded. Dental caries was also recorded, due to its association with soft fruit consumption in extant primates.

    Results

    Tooth chipping was low across all five genera studied, with a pooled chipping prevalence of 5% (21/421). When split into the three anthropoid families represented, chipping prevalence ranged from 2.6% (4/154) in Parapithecidae, 6% (12/199) in Propliopithecidae, and 7.4% (5/68) in Oligopithecidae. Three carious lesions were identified in Propliopithecidae.

    Discussion

    The chipping prevalence is low when compared to extant anthropoids (range from 4% to 40%) and is consistent with a predominantly soft fruit diet, but not with habitual hard food mastication. The presence of caries supports consumption of soft, sugary fruits, at least in Propliopithecidae. Our results add support for low dietary diversity in early anthropoids, with soft fruits as likely dominant food sources.

     
    more » « less
    Free, publicly-accessible full text available February 1, 2025
  3. Abstract

    Analysis of muscle architecture, traditionally conducted via gross dissection, has been used to evaluate adaptive relationships between anatomical form and behavioral function. However, gross dissection cannot preserve three‐dimensional relationships between myological structures for analysis. To analyze such data, we employ diffusible, iodine‐based contrast‐enhanced computed tomography (DiceCT) to explore the relationships between feeding ecology and masticatory muscle microanatomy in eight dietarily diverse strepsirrhines: allowing, for the first time, preservation of three‐dimensional fascicle orientation and tortuosity across a functional comparative sample. We find that fascicle properties derived from these digital analyses generally agree with those measured from gross‐dissected conspecifics. Physiological cross‐sectional area was greatest in species with mechanically challenging diets. Frugivorous taxa and the wood‐gouging species all exhibit long jaw adductor fascicles, while more folivorous species show the shortest relative jaw adductor fascicle lengths. Fascicle orientation in the parasagittal plane also seems to have a clear dietary association: most folivorous taxa have masseter and temporalis muscle vectors that intersect acutely while these vectors intersect obliquely in more frugivorous species. Finally, we observed notably greater magnitudes of fascicle tortuosity, as well as greater interspecific variation in tortuosity, within the jaw adductor musculature than in the jaw abductors. While the use of a single specimen per species precludes analysis of intraspecific variation, our data highlight the diversity of microanatomical variation that exists within the strepsirrhine feeding system and suggest that muscle architectural configurations are evolutionarily labile in response to dietary ecology—an observation to be explored across larger samples in the future.

     
    more » « less
    Free, publicly-accessible full text available June 1, 2025
  4. Abstract

    Due to their potential impact on population growth, many studies have investigated factors affecting infant survival in mammal populations under human care. Here we used more than 30 years of Association of Zoos and Aquariums (AZA) studbook data and contraception data from the AZA Reproductive Management Center, along with logistic regression models, to investigate which factors affect infant survival in fourEulemurspecies managed as Species Survival Plans® in AZA. Across species, infant survival to 1 month ranged from 65% to 78%. Previous experience producing surviving offspring was positively correlated to infant survival in collared (Eulemur collaris), crowned (Eulemur coronatus), and mongoose (Eulemur mongoz) lemurs. Both dam age and previous use of contraception were negatively correlated to infant survival for collared lemurs, though our results suggest the latter may be confounded with other factors. Blue‐eyed black lemurs (Eulemur flavifrons) were affected by birth location, suggesting differences in husbandry that may affect infant survival. These results can be used to assist in reproductive planning or to anticipate the likelihood of breeding success. Population managers may also be able to focus their reproductive planning on younger dams or those with previous experience to predict successful births. Future studies should seek to determine what aspects of previous dam success are most important to infant survival, investigate sire‐related factors, and examine factors related to cause of death in infants that may lead to differential survival. Our hope is to present a framework that may be useful for investigating infant survival in other mammal species' breeding programs.

     
    more » « less
    Free, publicly-accessible full text available May 1, 2025
  5. Abstract

    In 1974, Sue Herring described the relationship between two important performance variables in the feeding system, bite force and gape. These variables are inversely related, such that, without specific muscular adaptations, most animals cannot produce high bite forces at large gapes for a given sized muscle. Despite the importance of these variables for feeding biomechanics and functional ecology, the paucity of in vivo bite force data in primates has led to bite forces largely being estimated through ex vivo methods. Here, we quantify and compare in vivo bite forces and gapes with output from simulated musculoskeletal models in two craniofacially distinct strepsirrhines:Eulemur, which has a shorter jaw and slower chewing cycle durations relative to jaw length and body mass compared toVarecia. Bite forces were collected across a range of linear gapes from 16 adult lemurs (suborder Strepsirrhini) at the Duke Lemur Center in Durham, North Carolina representing three species:Eulemur flavifrons(n = 6; 3F, 3M),Varecia variegata(n = 5; 3F, 2M), andVarecia rubra(n = 5; 5F). Maximum linear and angular gapes were significantly higher forVareciacompared toEulemur(p = .01) but there were no significant differences in recorded maximum in vivo bite forces (p = .88). Simulated muscle models using architectural data for these taxa suggest this approach is an accurate method of estimating bite force‐gape tradeoffs in addition to variables such as fiber length, fiber operating range, and gapes associated with maximum force. Our in vivo and modeling data suggestVareciahas reduced bite force capacities in favor of absolutely wider gapes compared toEulemurin relation to their longer jaws. Importantly, our comparisons validate the simulated muscle approach for estimating bite force as a function of gape in extant and fossil primates.

     
    more » « less
    Free, publicly-accessible full text available May 1, 2025
  6. Abstract

    Systems of the body develop in a modular manner. For example, neural development in primates is generally rapid, whereas dental development varies much more. In the present study, we examined development of the skull, teeth, and postcrania in a highly specialized leaping primate,Galago moholi. Eighteen specimens ranging from birth to adult were studied. Bones, teeth, and the cranial cavity (i.e., endocast) were reconstructed with Amira software based on microCT cross‐referenced to histology. Amira was also used to compute endocast volume (as a proxy for brain size). Reconstructions of the wrist and ankle show that ossification is complete at 1 month postnatally, consistent with the onset of leaping locomotion in this species. Endocranial volume is less than 50% of adult volume at birth, ~80% by 1 month, and has reached adult volume by 2 months postnatal age. Full deciduous dentition eruption occurs by 2 weeks, and the young are known to begin capturing and consuming arthropods on their own by 4 weeks, contemporaneous with the timing of bone and ankle ossification that accompanies successful hunting. The modular pattern of development of body systems inGalago moholiprovides an interesting view of a “race” to adult morphology for some joints that are critical for specialized leaping and clinging, rapid crown mineralization to begin a transitional diet, but perhaps more prolonged reliance on nursing to support brain growth.

     
    more » « less
  7. Abstract

    Skeletal muscle fibre architecture provides important insights into performance of vertebrate locomotor and feeding behaviours. Chemical digestion and in situ sectioning of muscle bellies along their lengths to expose fibres, fibre orientation and intramuscular tendon, are two classical methods for estimating architectural variables such as fibre length (Lf) and physiological cross‐sectional area (PCSA). It has recently been proposed thatLfestimates are systematically shorter and hence less accurate using in situ sectioning. Here we addressed this hypothesis by comparingLfestimates between the two methods for the superficial masseter and temporalis muscles in a sample of strepsirrhine and platyrrhine primates. Means or single‐specimenLfestimates using chemical digestion were greater in 17/32 comparisons (53.13%), indicating the probability of achieving longer fibres using chemical digestion is no greater than chance in these taxonomic samples. We further explored the impact of sampling on scaling ofLfand PCSA in platyrrhines applying a bootstrapping approach. We found that sampling—both numbers of individuals within species and representation of species across the clade significantly influence scaling results ofLfand PCSA in platyrrhines. We show that intraspecific and clade sampling strategies can account for differences between previously published platyrrhine scaling studies. We suggest that differences in these two methodological approaches to assessing muscle architecture are relatively less consequential when estimatingLfand PCSA for comparative studies, whereas achieving more reliable estimates within species through larger samples and representation of the full clade space are important considerations in comparative studies of fibre architecture and scaling.

     
    more » « less
  8. Abstract

    Insufficient physical activity is a major risk factor for cardiometabolic disease (i.e., unhealthy weight gain, heart disease, and diabetes) in humans and may also negatively affect health of primates in human care. Effects of physical activity on energy expenditure and cardiometabolic health are virtually unstudied in nonhuman primates. We investigated physical activity and metabolic markers in 15 adult ring‐tailed lemurs (Lemur catta) and 11 Coquerel's sifakas (Propithecus coquereli) at the Duke Lemur Center during a period of low activity in winter when the animals were housed in buildings (with outdoor access) and a period of high activity when individuals were free‐ranging in large, outdoor, forested enclosures. We compared body mass, blood glucose, triglycerides, HDL‐ and LDL‐cholesterol, physical activity via accelerometry, and total energy expenditure (TEE) via the doubly labeled water method (in ring‐tailed lemurs only) between both conditions. Both species were more active and had a lower body mass in summer. Ring‐tailed lemurs had a higher TEE and lower triglyceride levels in summer, whereas sifaka had higher triglyceride levels in summer. Individuals that increased their activity more, also lost more body mass. Individuals that lost more body mass, also had a positive change in HDL‐cholesterol (i.e., higher values in summer). Changes in activity were not associated with changes in markers of metabolic health, body fat percentage and TEE (both unadjusted and adjusted for body composition). Older age was associated with lower activity in both species, and decreased glucose in ring‐tailed lemurs, but was otherwise unrelated to metabolic markers and, for ring‐tailed lemurs, adjusted TEE. Overall, body mass was lower during summer but the increase in physical activity did not strongly influence metabolic health or TEE in these populations.

     
    more » « less
    Free, publicly-accessible full text available January 1, 2025
  9. Abstract

    Measuring energy balance and energy metabolism can provide crucial information for understanding the ecological and behavioral drivers of an animal's energetic and physiological condition. Both urinary C‐peptide (uCP) of insulin and urinary total triiodothyronine (uTT3) have been validated as noninvasive biomarkers of energy balance and metabolic activity in haplorrhine primates. This study attempts to validate uCP and uTT3 measures in strepsirrhines, a phylogenetically distinct primate clade, using the ruffed lemur (genusVarecia) as a model. We experimentally manipulated the diet of captive black‐and‐white (Varecia variegata) and red (Varecia rubra) ruffed lemurs at Duke Lemur Center across a 4‐week period. We collected urine samples from subjects (n = 5) each day during 1 week of control diet, 2 weeks of calorie‐restricted diet and 1 week of refeeding, designed to temporarily reduce energy balance and metabolism. We also tested the outcome of filter paper as a storage method by comparing to controls (frozen at −20°C) to assess its suitability for studies of wild populations. We successfully measured uCP and uTT3 levels in frozen urine samples using commercial enzyme immunoassay kits and found that both biomarkers were excreted at lower concentrations (C‐peptide: 1.35 ng/mL, 54% reduction; TT3: 1.5 ng/mL, 37.5% reduction) during calorie‐restricted periods compared to normal diet periods. Filter paper recovery for uCP was 19%, though values were significantly positively correlated with frozen control samples. uTT3 could not be recovered at measurable concentrations using filter paper. These methods enable noninvasive measurement of energetic conditions in wild strepsirrhines and subsequent assessment of relationships between energy balance and numerous socioecological drivers in primate populations.

     
    more » « less
  10. Abstract

    For the endemic wildlife of Madagascar, the risk of extinction increases as the island's forest cover decreases. Many of the remaining forests are isolated fragments serving as important refugia for biodiversity. In this research note, we describe the biodiversity of the Ivohiboro Humid Forest (IHF), and its conservation importance in Madagascar. Located in a region dominated by wooded savannah, the IHF represents a very rare vegetation type. We conducted six biological surveys to explore the diversity of vertebrates and vascular plants in this isolated forest. Our results show that the IHF maintains a diverse ecosystem and harbors species of conservation significance. Thirty‐four of the identified species are categorized as Threatened by the IUCN, such as the ring‐tailed lemur (Lemur catta) and Isalo Madagascar frog (Gephyromantis corvus). Furthermore, we inventoried species distant from their known IUCN‐reported geographic ranges such as a species of blue‐nosed chameleon (Calummasp. aff. boettgeri,linotum) and the Lavasoa dwarf lemur (Cheirogaleus lavasoensis).

     
    more » « less