skip to main content


Search for: All records

Award ID contains: 2106030

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Drought-induced productivity reductions and tree mortality have been increasing in recent decades in forests around the globe. Developing adaptation strategies hinges on an adequate understanding of the mechanisms governing the drought vulnerability of forest stands. Prescribed reduction in stand density has been used as a management tool to reduce water stress and wildfire risk, but the processes that modulate fine-scale variations in plant water supply and water demand are largely missing in ecosystem models. We used an ecohydrological model that couples plant hydraulics with groundwater hydrology to examine how within-stand variations in tree spatial arrangements and topography might mitigate forest vulnerability to drought at individual-tree and stand scales. Our results demonstrated thinning generally ameliorated plant hydraulic stress and improved carbon and water fluxes of the remaining trees, although the effectiveness varied by climate and topography. Variable thinning that adjusted thinning intensity based on topography-mediated water availability achieved higher stand productivity and lower mortality risk, compared to evenly-spaced thinning at comparable intensities. The results from numerical experiments provided mechanistic evidence that topography mediates the effectiveness of thinning and highlighted the need for an explicit consideration of within-stand heterogeneity in trees and abiotic environments when designing forest thinning to mitigate drought impacts.

     
    more » « less
    Free, publicly-accessible full text available February 27, 2025
  2. Abstract

    Increasing drought frequency and severity in a warming climate threaten forest ecosystems with widespread tree deaths. Canopy structure is important in regulating tree mortality during drought, but how it functions remains controversial. Here, we show that the interplay between tree size and forest structure explains drought-induced tree mortality during the 2012-2016 California drought. Through an analysis of over one million trees, we find that tree mortality rate follows a “negative-positive-negative” piecewise relationship with tree height, and maintains a consistent negative relationship with neighborhood canopy structure (a measure of tree competition). Trees overshadowed by tall neighboring trees experienced lower mortality, likely due to reduced exposure to solar radiation load and lower water demand from evapotranspiration. Our findings demonstrate the significance of neighborhood canopy structure in influencing tree mortality and suggest that re-establishing heterogeneity in canopy structure could improve drought resiliency. Our study also indicates the potential of advances in remote-sensing technologies for silvicultural design, supporting the transition to multi-benefit forest management.

     
    more » « less
  3. Abstract Forest mortality has been widely observed across the globe during recent episodes of drought and extreme heat events. But the future of forest mortality remains poorly understood. While the direct effects of future climate and elevated CO 2 on forest mortality risk have been studied, the role of lateral subsurface water flow has rarely been considered. Here we demonstrated the fingerprint of lateral flow on the forest mortality risk of a riparian ecosystem using a coupled plant hydraulics-hydrology model prescribed with multiple Earth System Model projections of future hydroclimate. We showed that the anticipated water-saving and drought ameliorating effects of elevated CO 2 on mortality risk were largely compromised when lateral hydrological processes were considered. Further, we found lateral flow reduce ecosystem sensitivity to climate variations, by removing soil water excess during wet periods and providing additional water from groundwater storage during dry periods. These findings challenge the prevailing expectation of elevated CO 2 to reduce mortality risk and highlight the need to assess the effects of lateral flow exchange more explicitly moving forward with forest mortality projections. 
    more » « less