Abstract The Sun is a bright gamma-ray source due to hadronic cosmic-ray interactions with solar gas. While it is known that incoming cosmic rays must generally first be reflected by solar magnetic fields to produce outgoing gamma rays, theoretical models have yet to reproduce the observed spectra. We introduce a simplified model of the solar magnetic fields that captures the main elements relevant to gamma-ray production. These are a flux tube, representing the network elements, and a flux sheet, representing the intergranular sheets. Both the tube and sheet have a horizontal size of order 100 km and serve as sites where cosmic rays are reflected and gamma rays are produced. While our simplified double-structure model does not capture all the complexities of the solar-surface magnetic fields, such as Alfvén turbulence from wave interactions or magnetic fluctuations from convection motions, it improves on previous models by reasonably producing both the hard spectrum seen by Fermi Large Area Telescope at 1–200 GeV and the considerably softer spectrum seen by the High Altitude Water Cherenkov Observatory (HAWC) at near 103GeV. We show that lower-energy (≲10 GeV) gamma rays are primarily produced in the network elements and higher-energy (≳few × 10 GeV) gamma rays in the intergranular sheets. Notably, the spectrum softening observed by HAWC results from the limited effectiveness of capturing and reflecting ∼104GeV cosmic rays by the finite-sized intergranular sheets. Our study is important for understanding cosmic-ray transport in the solar atmosphere and will lead to insights into small-scale magnetic fields at the photosphere. 
                        more » 
                        « less   
                    
                            
                            High-altitude characterization of the Hunga pressure wave with cosmic rays by the HAWC observatory
                        
                    
    
            High-energy cosmic rays that hit the Earth can be used to study large-scale atmospheric perturbations. After a first interaction in the upper parts of the atmosphere, cosmic rays produce a shower of particles that sample it down to the detector level. The HAWC (High-Altitude Water Cherenkov) gamma-ray observatory in Central Mexico at 4,100 m elevation detects air shower particles continuously with 300 water Cherenkov detectors with an active area of 12,500 m2. On January 15th, 2022, HAWC detected the passage of the pressure wave created by the explosion of the Hunga volcano in the Tonga islands, 9,000 km away, as an anomaly in the measured rate of shower particles. The HAWC measurements are used to determine the propagation speed of four pressure wave passages, and correlate the variations of the shower particle rates with the barometric pressure changes. The profile of the shower particle rate and atmospheric pressure variations for the first transit of the pressure wave at HAWC is compared to the pressure measurements at the Tonga island, near the volcanic explosion. By using the cosmic-ray propagation in the atmosphere as a probe for the pressure, it is possible to achieve very high time-resolution measurements. Moreover, the high-altitude data from HAWC allows to observe the shape of the pressure anomaly with less perturbations compared to sea level detectors. Given the particular location and the detection method of HAWC, our high-altitude data provides valuable information that contributes to fully characterize this once-in-a-century phenomenon. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2111531
- PAR ID:
- 10529751
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- Elseivier
- Date Published:
- Journal Name:
- Advances in Space Research
- Volume:
- 73
- Issue:
- 1
- ISSN:
- 0273-1177
- Page Range / eLocation ID:
- 1083 to 1091
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract The High-Altitude Water Cherenkov (HAWC) Gamma-Ray Observatory, located on the side of the Sierra Negra volcano in Mexico, has been fully operational since 2015. The HAWC collaboration has recently significantly improved their extensive air shower reconstruction algorithms, which has notably advanced the observatory performance. The energy resolution for primary gamma rays with energies below 1 TeV was improved by including a noise-suppression algorithm. Corrections have also been made to systematic errors in direction fitting related to the detector and shower plane inclinations, biases in highly inclined showers, and enhancements to the core reconstruction. The angular resolution for gamma rays approaching the HAWC array from large zenith angles (>37°) has improved by a factor of 4 at the highest energies (>70 TeV) as compared to previous reconstructions. The inclusion of a lateral distribution function fit to the extensive air shower footprint on the array to separate gamma-ray primaries from cosmic-ray ones based on the resultingχ2values improved the background rejection performance at all inclinations. At large zenith angles, the improvement in significance is a factor of 4 compared to previous HAWC publications. These enhancements have been verified by observing the Crab Nebula, which is an overhead source for the HAWC Observatory. We show that the sensitivity to Crab-like point sources (E−2.63) with locations overhead to 30° zenith is comparable to or less than 10% of the Crab Nebula’s flux between 2 and 50 TeV. Thanks to these improvements, HAWC can now detect more sources, including the Galactic center.more » « less
- 
            A surface array of radio antennas will enhance the performance of the IceTop array and enable new, complementary science goals. First, the accuracy for cosmic-ray air showers will be increased since the radio array provides a calorimetric measurement of the electromagnetic component and is sensitive to the position of the shower maximum. This enhanced accuracy can be used to better measure the mass composition, to search for possible mass-dependent anisotropies in the arrival directions of cosmic rays, and for more thorough tests of hadronic interaction models. Second, the sensitivity of the radio array to inclined showers will increase the sky coverage for cosmic-ray measurements. Third, the radio array can be used to search for PeV photons from the Galactic Center. Since IceTop is planned to be enhanced by a scintillator array in the near future, a radio extension sharing the same infrastructure can be installed with minimal additional effort and excellent scientific prospects. The combination of ice-Cherenkov, scintillation, and radio detectors at IceCube will provide unprecedented accuracy for the study of highenergy Galactic cosmic rays.more » « less
- 
            De Mitri, I.; Barbato, F.C.T.; Boncioli, D.; Evoli, C.; Pagliaroli, G.; Salamida, F. (Ed.)The IceCube Neutrino Observatory is a multi-component detector at the South Pole. Besides studying high-energy neutrinos, it is capable of measuring high-energy cosmic rays from PeV to EeV. This energy region is thought to cover the transition from galactic to extragalactic sources of cosmic rays. The observatory consists of the deep in-ice IceCube array, which measures the high-energy (≥500 GeV) muonic component, and the IceTop surface array, which is sensitive to the electromagnetic and low-energy muonic part of an air shower. The primary energy and the mass composition can be measured simultaneously by applying statistical methods including modern machine-learning techniques to reconstruct cosmic ray air showers. In this contribution, we will discuss recent improvements to the reconstruction techniques, the mass composition sensitivity, and an outlook on future improved measurements with the full surface scintillator/radio array to mitigate snow accumulation and measure the air shower maximum X max using imaging air-Cherenkov telescopes IceAct.more » « less
- 
            null (Ed.)IceAct is a proposed surface array of compact (50 cm diameter) and cost-effective Imaging Air Cherenkov Telescopes installed at the site of the IceCube Neutrino Observatory at the geographic South Pole. Since January 2019, two IceAct telescope demonstrators, featuring 61 silicon pho- tomultiplier (SiPM) pixels have been taking data in the center of the IceTop surface array during the austral winter. We present the first analysis of hybrid cosmic ray events detected by the IceAct imaging air-Cherenkov telescopes in coincidence with the IceCube Neutrino Observatory, includ- ing the IceTop surface array and the IceCube in-ice array. By featuring an energy threshold of about 10 TeV and a wide field-of-view, the IceAct telescopes show promising capabilities of im- proving current cosmic ray composition studies: measuring the Cherenkov light emissions in the atmosphere adds new information about the shower development not accessible with the current detectors, enabling significantly better primary particle type discrimination on a statistical basis. The hybrid measurement also allows for detailed feasibility studies of detector cross-calibration and of cosmic ray veto capabilities for neutrino analyses. We present the performance of the telescopes, the results from the analysis of two years of data, and an outlook of a hybrid simulation for a future telescope array.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    