skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A remarkable and widespread new lichenicolous species of Mycocalicium (Sphinctrinaceae) producing campylidia-like conidiomata and appendiculate conidia
A lichenicolous fungus forming large black, vertically elongate, campylidia-like conidiomata on the thallus of Ochrolechia was recently collected in Austria, Mexico and the USA. The conidia are so remarkable in being multiappendiculate that initially no existing fungal genera appeared to be suitable for its description. Nevertheless, molecular phylogenetic analyses of nuITS and nuLSU sequences recovered the species within the genus Mycocalicium. To date, no species of Mycocaliciales has been reported producing appendiculate conidia. The species is described as new M. campylidiophorum. The new species was also discovered in the type specimen of Opegrapha chionographa that was collected in Colombia 163 years ago. This discovery led us to revise O. chionographa, originally described as a lichen, and clarify that in fact the name applies to a lichenicolous fungus based on type material that is an admixture of M. campylidiophorum, an Ochrolechia and an Opegrapha species. The name is shown to apply to the Opegrapha species and lectotypified as such. Opegrapha blakii is treated as synonym of O. chionographa.  more » « less
Award ID(s):
2436848
PAR ID:
10529783
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
W. Szafer Institute, Polish Academy of Sciences
Date Published:
Journal Name:
Plant and Fungal Systematics
Volume:
68
Issue:
2
ISSN:
2544-7459
Page Range / eLocation ID:
411 to 423
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Lin, Xiaorong (Ed.)
    ABSTRACT In filamentous fungi, asexual development involves cellular differentiation and metabolic remodeling leading to the formation of intact asexual spores. The development of asexual spores (conidia) in Aspergillus is precisely coordinated by multiple transcription factors (TFs), including VosA, VelB, and WetA. Notably, these three TFs are essential for the structural and metabolic integrity, i.e., proper maturation, of conidia in the model fungus Aspergillus nidulans . To gain mechanistic insight into the complex regulatory and interdependent roles of these TFs in asexual sporogenesis, we carried out multi-omics studies on the transcriptome, protein-DNA interactions, and primary and secondary metabolism employing A. nidulans conidia. RNA sequencing and chromatin immunoprecipitation sequencing analyses have revealed that the three TFs directly or indirectly regulate the expression of genes associated with heterotrimeric G-protein signal transduction, mitogen-activated protein (MAP) kinases, spore wall formation and structural integrity, asexual development, and primary/secondary metabolism. In addition, metabolomics analyses of wild-type and individual mutant conidia indicate that these three TFs regulate a diverse array of primary metabolites, including those in the tricarboxylic acid (TCA) cycle, certain amino acids, and trehalose, and secondary metabolites such as sterigmatocystin, emericellamide, austinol, and dehydroaustinol. In summary, WetA, VosA, and VelB play interdependent, overlapping, and distinct roles in governing morphological development and primary/secondary metabolic remodeling in Aspergillus conidia, leading to the production of vital conidia suitable for fungal proliferation and dissemination. IMPORTANCE Filamentous fungi produce a vast number of asexual spores that act as efficient propagules. Due to their infectious and/or allergenic nature, fungal spores affect our daily life. Aspergillus species produce asexual spores called conidia; their formation involves morphological development and metabolic changes, and the associated regulatory systems are coordinated by multiple transcription factors (TFs). To understand the underlying global regulatory programs and cellular outcomes associated with conidium formation, genomic and metabolomic analyses were performed in the model fungus Aspergillus nidulans . Our results show that the fungus-specific WetA/VosA/VelB TFs govern the coordination of morphological and chemical developments during sporogenesis. The results of this study provide insights into the interdependent, overlapping, or distinct genetic regulatory networks necessary to produce intact asexual spores. The findings are relevant for other Aspergillus species such as the major human pathogen Aspergillus fumigatus and the aflatoxin producer Aspergillus flavus . 
    more » « less
  2. Abstract Peltigera globulata Miadl. & Magain, a new species in the P. ponojensis/monticola species complex of section Peltigera , is formally described. This clade was previously given the interim designation Peltigera sp. 17. It is found in sun-exposed and xeric habitats at high altitudes in Peru and Ecuador. Peltigera globulata can be easily recognized by its irregularly globulated margins covered mostly by thick, white pruina, somewhat resembling the sorediate thallus margins of P. soredians , another South American species from section Peltigera . The hypervariable region of ITS1 (ITS1-HR), which is in general highly variable among species of section Peltigera , does not have diagnostic value for species identification within the P. ponojensis/monticola complex. Nevertheless, no significant level of gene flow was detected among eight lineages representing a clade of putative species (including P. globulata ) within this complex. ITS sequences from the holotype specimens of P. monticola Vitik. (collected in 1979) and P. soredians Vitik. (collected in 1981) and lectotype specimens of P. antarctica C. W. Dodge (collected in 1941) and P. aubertii C. W. Dodge (collected in 1952) were successfully obtained through Sanger and Illumina metagenomic sequencing. BLAST results of these sequences revealed that the type specimen of P. monticola falls within the P. monticola/ponojensis 7 clade, which represents P. monticola s. str., and confirmed that the type specimen of P. aubertii falls within a clade identified previously as P. aubertii based on morphology. The ITS sequence from the type specimen of P. soredians , which superficially resembles P. globulata , confirms its placement in the P. rufescens clade. Finally, we discovered that the name P. antarctica was erroneously applied to a lineage in the P. ponojensis/monticola clade. The ITS sequence from the type specimen of P. antarctica represents a lineage within the P. rufescens clade, which is sister to the P. ponojensis/monticola clade. 
    more » « less
  3. null (Ed.)
    The fungus-growing ant Mycetomoellerius (previously Trachymyrmex ) zeteki (Weber 1940) has been the focus of a wide range of studies examining symbiotic partners, garden pathogens, mating frequencies, and genomics. This is in part due to the ease of collecting colonies from creek embankments and its high abundance in the Panama Canal region. The original description was based on samples collected on Barro Colorado Island (BCI), Panama. However, most subsequent studies have sampled populations on the mainland 15 km southeast of BCI. Herein we show that two sibling ant species live in sympatry on the mainland: Mycetomoellerius mikromelanos Cardenas, Schultz, & Adams and M . zeteki . This distinction was originally based on behavioral differences of workers in the field and on queen morphology ( M . mikromelanos workers and queens are smaller and black while those of M. zeteki are larger and red). Authors frequently refer to either species as “ M . cf. zeteki ,” indicating uncertainty about identity. We used an integrative taxonomic approach to resolve this, examining worker behavior, chemical profiles of worker volatiles, molecular markers, and morphology of all castes. For the latter, we used conventional taxonomic indicators from nine measurements, six extrapolated indices, and morphological characters. We document a new observation of a Diapriinae (Hymenoptera: Diapriidae) parasitoid wasp parasitizing M . zeteki . Finally, we discuss the importance of vouchering in dependable, accessible museum collections and provide a table of previously published papers to clarify the usage of the name T . zeteki . We found that most reports of M . zeteki or M . cf. zeteki —including a genome—actually refer to the new species M . mikromelanos . 
    more » « less
  4. null (Ed.)
    Studies of Trochila (Leotiomycetes, Helotiales, Cenangiaceae) are scarce. Here, we describe two new species based on molecular phylogenetic data and morphology. Trochila bostonensis was collected at the Boston Harbor Islands National Recreation Area, Massachusetts. It was found on the stem of Asclepias syriaca , representing the first report of any Trochila species from a plant host in the family Apocynaceae. Trochila urediniophila is associated with the uredinia of the rust fungus Cerotelium fici . It was discovered during a survey for rust hyperparasites conducted at the Arthur Fungarium, in a single sample from 1912 collected in Trinidad. Macro- and micromorphological descriptions, illustrations, and molecular phylogenetic analyses are presented. The two new species are placed in Trochila with high support in both our six-locus (SSU, ITS, LSU, rpb1 , rpb2 , tef1 ) and two-locus (ITS, LSU) phylogenetic reconstructions. In addition, two species are combined in Trochila : Trochila colensoi (formerly placed in Pseudopeziza ) and T. xishuangbanna (originally described as the only species in Calycellinopsis ). This study reveals new host plant families, a new ecological strategy, and a new country record for the genus Trochila . Finally, our work emphasizes the importance of specimens deposited in biological collections such as fungaria. 
    more » « less
  5. Abstract HysteromorphaLutz, 1931 is a small but broadly distributed genus of diplostomoidean digeneans parasitic as adults primarily in cormorants, but also reported from some other fish-eating birds. Their metacercariae were found in a variety of freshwater fishes as second intermediate hosts. Prior to this study, the genus included only 3 nominal species, 2 of them distributed in the Old World and 1 in the New World. We obtained sequences of partial mitochondrialcox1 gene and nuclear rDNA operon from new specimens collected in Europe, North and South America and used them for species comparisons and phylogenetic analysis. We also examined morphology of our newly collected specimens as well as museum specimens. Our analysis has demonstrated that at least 2 (likely 3) species ofHysteromorphaare distributed in the Americas.Hysteromorphasp. previously sequenced from larval stages, clearly represents a new species named hereinHysteromorpha ostrowskiaen. sp.Achatz, Locke et Tkach. Morphology of adults of the new species was earlier described in sufficient detail under the nameHysteromorpha triloba(Rudolphi, 1819). Our analyses also suggest the presence of another unknownHysteromorphasp. in North America represented bycox1 sequence from southeastern Canada (GenBank JF769473), but no morphological vouchers are available for this species. 
    more » « less