skip to main content


This content will become publicly available on April 23, 2025

Title: LLT polynomials in the Schiffmann algebra
Abstract

We identify certain combinatorially defined rational functions which, under the shuffle to Schiffmann algebra isomorphism, map to LLT polynomials in any of the distinguished copiesΛ(Xm,n)E\Lambda(X^{m{,}n})\subset\mathcal{E}of the algebra of symmetric functions embedded in the elliptic Hall algebra ℰ of Burban and Schiffmann.As a corollary, we deduce an explicit raising operator formula for the ∇ operator applied to any LLT polynomial.In particular, we obtain a formula formsλ\nabla^{m}s_{\lambda}which serves as a starting point for our proof of the Loehr–Warrington conjecture in a companion paper to this one.

 
more » « less
Award ID(s):
1855784 1840234
PAR ID:
10529869
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
De Gruyter
Date Published:
Journal Name:
Journal für die reine und angewandte Mathematik (Crelles Journal)
ISSN:
0075-4102
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We show that the affine vertex superalgebraVk(osp1|2n)V^{k}(\mathfrak{osp}_{1|2n})at generic level 𝑘 embeds in the equivariant 𝒲-algebra ofsp2n\mathfrak{sp}_{2n}times4n4nfree fermions.This has two corollaries:(1) it provides a new proof that, for generic 𝑘, the cosetCom(Vk(sp2n),Vk(osp1|2n))\operatorname{Com}(V^{k}(\mathfrak{sp}_{2n}),V^{k}(\mathfrak{osp}_{1|2n}))is isomorphic toW(sp2n)\mathcal{W}^{\ell}(\mathfrak{sp}_{2n})for=(n+1)+(k+n+1)/(2k+2n+1)\ell=-(n+1)+(k+n+1)/(2k+2n+1), and(2) we obtain the decomposition of ordinaryVk(osp1|2n)V^{k}(\mathfrak{osp}_{1|2n})-modules intoVk(sp2n)W(sp2n)V^{k}(\mathfrak{sp}_{2n})\otimes\mathcal{W}^{\ell}(\mathfrak{sp}_{2n})-modules.Next, if 𝑘 is an admissible level and ℓ is a non-degenerate admissible level forsp2n\mathfrak{sp}_{2n}, we show that the simple algebraLk(osp1|2n)L_{k}(\mathfrak{osp}_{1|2n})is an extension of the simple subalgebraLk(sp2n)W(sp2n)L_{k}(\mathfrak{sp}_{2n})\otimes{\mathcal{W}}_{\ell}(\mathfrak{sp}_{2n}).Using the theory of vertex superalgebra extensions, we prove that the category of ordinaryLk(osp1|2n)L_{k}(\mathfrak{osp}_{1|2n})-modules is a semisimple, rigid vertex tensor supercategory with only finitely many inequivalent simple objects.It is equivalent to a certain subcategory ofW(sp2n)\mathcal{W}_{\ell}(\mathfrak{sp}_{2n})-modules.A similar result also holds for the category of Ramond twisted modules.Due to a recent theorem of Robert McRae, we get as a corollary that categories of ordinaryLk(sp2n)L_{k}(\mathfrak{sp}_{2n})-modules are rigid.

     
    more » « less
  2. Abstract

    We introduce a distributional Jacobian determinantdetDVβ(Dv)\det DV_{\beta}(Dv)in dimension two for the nonlinear complex gradientVβ(Dv)=|Dv|β(vx1,vx2)V_{\beta}(Dv)=\lvert Dv\rvert^{\beta}(v_{x_{1}},-v_{x_{2}})for anyβ>1\beta>-1, whenevervWloc1,2v\in W^{1\smash{,}2}_{\mathrm{loc}}andβ|Dv|1+βWloc1,2\beta\lvert Dv\rvert^{1+\beta}\in W^{1\smash{,}2}_{\mathrm{loc}}.This is new whenβ0\beta\neq 0.Given any planar ∞-harmonic function 𝑢, we show that such distributional Jacobian determinantdetDVβ(Du)\det DV_{\beta}(Du)is a nonnegative Radon measure with some quantitative local lower and upper bounds.We also give the following two applications.

    Applying this result withβ=0\beta=0, we develop an approach to build up a Liouville theorem, which improves that of Savin.Precisely, if 𝑢 is an ∞-harmonic function in the wholeR2\mathbb{R}^{2}withlim infRinfcR1RB(0,R)|u(x)c|dx<,\liminf_{R\to\infty}\inf_{c\in\mathbb{R}}\frac{1}{R}\barint_{B(0,R)}\lvert u(x)-c\rvert\,dx<\infty,thenu=b+axu=b+a\cdot xfor somebRb\in\mathbb{R}andaR2a\in\mathbb{R}^{2}.

    Denoting byupu_{p}the 𝑝-harmonic function having the same nonconstant boundary condition as 𝑢, we show thatdetDVβ(Dup)detDVβ(Du)\det DV_{\beta}(Du_{p})\to\det DV_{\beta}(Du)aspp\to\inftyin the weak-⋆ sense in the space of Radon measure.Recall thatVβ(Dup)V_{\beta}(Du_{p})is always quasiregular mappings, butVβ(Du)V_{\beta}(Du)is not in general.

     
    more » « less
  3. Abstract

    LetE/Q\mathrm{E}/\mathbb{Q}be an elliptic curve and 𝑝 a prime of supersingular reduction forE\mathrm{E}.Consider a quadratic extensionL/QpL/\mathbb{Q}_{p}and the corresponding anticyclotomicZp\mathbb{Z}_{p}-extensionL/LL_{\infty}/L.We analyze the structure of the pointsE(L)\mathrm{E}(L_{\infty})and describe two global implications of our results.

     
    more » « less
  4. Abstract

    LetK/QpK/\mathbf{Q}_{p}be unramified.Inside the Emerton–Gee stackX2\mathcal{X}_{2}, one can consider the locus of two-dimensional mod 𝑝 representations ofGal(K̄/K)\mathrm{Gal}(\overline{K}/K)having a crystalline lift with specified Hodge–Tate weights.We study the case where the Hodge–Tate weights are irregular, which is an analogue for Galois representations of the partial weight one condition for Hilbert modular forms.We prove that if the gap between each pair of weights is bounded by 𝑝 (the irregular analogue of a Serre weight), then this locus is irreducible.We also establish various inclusion relations between these loci.

     
    more » « less
  5. Abstract

    A conjecture of Erdős states that, for any large primeq, every reduced residue class(modq){(\operatorname{mod}q)}can be represented as a productp1p2{p_{1}p_{2}}of two primesp1,p2q{p_{1},p_{2}\leq q}. We establish a ternary version of this conjecture, showing that, for any sufficiently large cube-free integerq, every reduced residue class(modq){(\operatorname{mod}q)}can be written asp1p2p3{p_{1}p_{2}p_{3}}withp1,p2,p3q{p_{1},p_{2},p_{3}\leq q}primes. We also show that, for anyε>0{\varepsilon>0}and any sufficiently large integerq, at least(23-ε)φ(q){(\frac{2}{3}-\varepsilon)\varphi(q)}reduced residue classes(modq){(\operatorname{mod}q)}can be represented as a productp1p2{p_{1}p_{2}}of two primesp1,p2q{p_{1},p_{2}\leq q}.The problems naturally reduce to studying character sums. The main innovation in the paper is the establishment of a multiplicative dense model theorem for character sums over primes in the spirit of the transference principle. In order to deal with possible local obstructions we establish bounds for the logarithmic density of primes in certain unions of cosets of subgroups ofq×{\mathbb{Z}_{q}^{\times}}of small index and study in detail the exceptional case that there exists a quadratic characterψ(modq){\psi~{}(\operatorname{mod}\,q)}such thatψ(p)=-1{\psi(p)=-1}for very many primespq{p\leq q}.

     
    more » « less