skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1855784

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We identify certain combinatorially defined rational functions which, under the shuffle to Schiffmann algebra isomorphism, map to LLT polynomials in any of the distinguished copies Λ ( X m , n ) E \Lambda(X^{m{,}n})\subset\mathcal{E}of the algebra of symmetric functions embedded in the elliptic Hall algebra ℰ of Burban and Schiffmann.As a corollary, we deduce an explicit raising operator formula for the ∇ operator applied to any LLT polynomial.In particular, we obtain a formula for m s λ \nabla^{m}s_{\lambda}which serves as a starting point for our proof of the Loehr–Warrington conjecture in a companion paper to this one. 
    more » « less
  2. Abstract We prove the extended delta conjecture of Haglund, Remmel and Wilson, a combinatorial formula for $$\Delta _{h_l}\Delta ' _{e_k} e_{n}$$ , where $$\Delta ' _{e_k}$$ and $$\Delta _{h_l}$$ are Macdonald eigenoperators and $$e_n$$ is an elementary symmetric function. We actually prove a stronger identity of infinite series of $$\operatorname {\mathrm {GL}}_m$$ characters expressed in terms of LLT series. This is achieved through new results in the theory of the Schiffmann algebra and its action on the algebra of symmetric functions. 
    more » « less
  3. null (Ed.)