skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Not all that is β0 is β-function: the DGLAP resummation and the running coupling in NLO JIMWLK
A<sc>bstract</sc> We reanalyze the origin of the large transverse logarithms associated with the QCD one loopβfunction coefficient in the NLO JIMWLK Hamiltonian. We show that some of these terms are not associated with the running of the QCD coupling constant but rather with the DGLAP evolution. The DGLAP-like resummation of these logarithms is mandatory within the JIMWLK Hamiltonian, as long as the color correlation length in the projectile is larger than that in the target. This regime in fact covers the whole range of rapidities at which JIMWLK evolution is supposed to be applicable. We derive the RG equation that resums these logarithms to all orders inαsin the JIMWLK Hamiltonian. This is a nonlinear equation for the eikonal scattering matrixS(x). We solve this equation, and perform the DGLAP resummation in two simple cases: the dilute limit, where both the projectile and the target are far from saturation, and the saturated regime, where the target correlation length also determines its saturation momentum.  more » « less
Award ID(s):
2208387
PAR ID:
10529876
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Journal of High Energy Physics
Date Published:
Journal Name:
Journal of High Energy Physics
Volume:
2024
Issue:
7
ISSN:
1029-8479
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A<sc>bstract</sc> We explore the recently derived equation that resums DGLAP corrections to the JIMWLK Hamiltonian in the simplified setting of the SU(2) gauge theory. We solve the equation numerically for the scattering matrix of a dressed gluon for a particular initial condition, that corresponds to a dipole initial state. We evolve theS-matrix of a single dressed gluon from the scaleQP, which is the inverse color correlation length in the projectile toQ≫QPwhich corresponds to the hard resolution scale provided by the target. As expected,Sceases to be unitary if evolved to significant ln$$ {Q}^2/{Q}_P^2 $$ Q 2 / Q P 2 . Our numerical results indicate an interesting universal (independent of the coupling constant) pattern for this deviation from unitarity. 
    more » « less
  2. null (Ed.)
    A bstract Further developing ideas set forth in [1], we discuss QCD Reggeon Field Theory (RFT) and formulate restrictions imposed on its Hamiltonian by the unitarity of underlying QCD. We identify explicitly the QCD RFT Hilbert space, provide algebra of the basic degrees of freedom (Wilson lines and their duals) and the algorithm for calculating the scattering amplitudes. We formulate conditions imposed on the “Fock states” of RFT by unitary nature of QCD, and explain how these constraints appear as unitarity constraints on possible RFT hamiltonians that generate energy evolution of scattering amplitudes. We study the realization of these constraints in the dense-dilute limit of RFT where the appropriate Hamiltonian is the JIMWLK Hamiltonian H JIMWLK . We find that the action H JIMWLK on the dilute projectile states is unitary, but acting on dense “target” states it violates unitarity and generates states with negative probabilities through energy evolution. 
    more » « less
  3. A<sc>bstract</sc> Large-momentum effective theory (LaMET) provides an approach to directly calculate thex-dependence of generalized parton distributions (GPDs) on a Euclidean lattice through power expansion and a perturbative matching. When a parton’s momentum becomes soft, the corresponding logarithms in the matching kernel become non-negligible at higher orders of perturbation theory, which requires a resummation. But the resummation for the off-forward matrix elements at nonzero skewnessξis difficult due to their multi-scale nature. In this work, we demonstrate that these logarithms are important only in the threshold limit, and derive the threshold factorization formula for the quasi-GPDs in LaMET. We then propose an approach to resum all the large logarithms based on the threshold factorization, which is implemented on a GPD model. We demonstrate that the LaMET prediction is reliable for [−1 +x0,−ξ−x0] ∪ [−ξ+x0, ξ−x0] ∪ [ξ+x0,1 −x0], wherex0is a cutoff depending on hard parton momenta. Through our numerical tests with the GPD model, we demonstrate that our method is self-consistent and that the inverse matching does not spread the nonperturbative effects or power corrections to the perturbatively calculable regions. 
    more » « less
  4. A<sc>bstract</sc> We investigate the effect of gluon Bose enhancement in the nuclear wave function on the dijet production in incoherent diffractive processes in DIS and ultraperipheral collisions. We demonstrate that Bose enhancement leads to an enhancement of diffractive dijet production cross section when the transverse momenta of the two jets are aligned at zero relative angle. This enhancement is maximal when the magnitude of the transverse momenta of the two jets are equal, and disappears rather quickly as a function of the ratio of the two momenta. We study both the dilute limit and fully nonlinear dense regime where the nuclear wave function is evolved with the leading order JIMWLK equation. In both cases we observe a visible effect, with it being enhanced by the evolution due to the dynamical generation of the color neutralization scale. 
    more » « less
  5. A<sc>bstract</sc> Recent progress on nonlinear sigma models on de Sitter background has permitted the resummation of large inflationary logarithms by combining a variant of Starobinsky’s stochastic formalism with a variant of the renormalization group. We reconsider single graviton loop corrections to the photon wave function, and to the Coulomb potential, in light of these developments. Neither of the two 1-loop results have a stochastic explanation, however, the flow of a curvature-dependent field strength renormalization explains their factors of ln(a). We speculate that the factor of ln(Hr) in the Coulomb potential should not be considered as a leading logarithm effect. 
    more » « less