skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, November 14 until 2:00 AM ET on Saturday, November 15 due to maintenance. We apologize for the inconvenience.


Title: Pterion variation in the skulls of rhesus macaques from Cayo Santiago: Inheritance, development, and pathology
Abstract The pterion is the sutural juncture of the frontal, parietal, sphenoidal, temporal, and zygomatic bones on the lateral aspect of the cranium. As a craniometric landmark, the pterion has a taxonomic valence, in addition to a common neurosurgical entry point in medicine. Variation in the articulation patterns at the pterion have been documented between primate species yet have a high degree of uniformity within species, suggesting a genetic control for this complex region of the skull. In this study, pterion pattern variation was investigated in 1627 Rhesus macaque crania of the Cayo Santiago colony. The colony's associated skeletal collections accompany known age, sex, and maternal lineages. Pterion pattern prevalence rates were tested against matrilines, as well as cranial shape, and cranial sutural fusion ages (including individuals with prematurely fused sutures). Five patterns were identified, the most prominent being the prevailing Old World Monkey frontotemporal (FT) articulation (83.4%). The relative frequency of those not exhibiting the FT pattern was found to vary considerably between matrilineal families (p = 0.037), ranging from 5.3% to 34.2%. Mothers with the non‐FT pterion pattern were three times as likely to bear non‐FT offspring. Cranial shape additionally varied with pterion type. Males exhibiting zygomaticotemporal (ZT) and sphenoparietal (SP) articulations possessed a relatively longer and narrower cranium than those with the default FT type (p = < 0.001). Cranial sutural fusion ages were not found to differ between pterion types, though all individuals with craniosynostosis (6; 0.38%) exhibited the FT type. The study provided strong evidence for a genetic source for pterion pattern as well as outlining a relatively novel relationship with cranial shape and sutural fusion ages. A unifying explanation may lie in those genes involved in both sutural and craniofacial development, or in the variation of brain growth processes channeling sutural articulation at the pterion. Both may be heritable and responsible for producing observed matrilineal differences in the pterion.  more » « less
Award ID(s):
1926601
PAR ID:
10530000
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
The Anatomical Record
Volume:
307
Issue:
9
ISSN:
1932-8486
Format(s):
Medium: X Size: p. 3139-3151
Size(s):
p. 3139-3151
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract A snake‐like body plan and burrowing lifestyle characterize numerous vertebrate groups as a result of convergent evolution. One such group is the amphisbaenians, a clade of limbless, fossorial lizards that exhibit head‐first burrowing behavior. Correlated with this behavior, amphisbaenian skulls are more rigid and coossified than those of nonburrowing lizards. However, due to their lifestyle, there are many gaps in our understanding of amphisbaenian anatomy, including how their cranial osteology varies among individuals of the same species and what that reveals about constraints on the skull morphology of head‐first burrowing taxa. We investigated intraspecific variation in the cranial osteology of amphisbaenians using seven individuals of the trogonophidDiplometopon zarudnyi. Variation in both skull and individual skull element morphology was examined qualitatively and quantitatively through three‐dimensional (3D) models created from microcomputed tomography data. Qualitative examination revealed differences in the number and position of foramina, the interdigitation between the frontals and parietal, and the extent of coossification among the occipital complex, fused basioccipital and parabasisphenoid (“parabasisphenoid‐basioccipital complex”), and elements X. We performed 3D landmark‐based geometric morphometrics for the quantitative assessment, revealing shape differences in the skull, premaxilla, maxilla, frontal, and parietal. The observed intraspecific variation may be the result of different stages of ontogenetic development or biomechanical optimization for head‐first burrowing. For example, variation in the coossification of the occipital region suggests a potential ontogenetic coossification sequence. Examination of these areas of variation across other head‐first burrowing taxa will help determine if the variation is clade‐specific or part of a broader macroevolutionary pattern of head‐first burrowing. 
    more » « less
  2. Abstract Morphological variation among the viviparous sea snakes (Hydrophiinae), a clade of fully aquatic elapid snakes, includes an extreme “microcephalic” ecomorph that has a very small head atop a narrow forebody, while the hind body is much thicker (up to three times the forebody girth). Previous research has demonstrated that this morphology has evolved at least nine times as a consequence of dietary specialization on burrowing eels, and has also examined morphological changes to the vertebral column underlying this body shape. The question addressed in this study is what happens to the skull during this extreme evolutionary change? Here we use X-ray micro-computed tomography and geometric morphometric methods to characterize cranial shape variation in 30 species of sea snakes. We investigate ontogenetic and evolutionary patterns of cranial shape diversity to understand whether cranial shape is predicted by dietary specialization, and examine whether cranial shape of microcephalic species may be a result of heterochronic processes. We show that the diminutive cranial size of microcephalic species has a convergent shape that is correlated with trophic specialization to burrowing prey. Furthermore, their cranial shape is predictable for their size and very similar to that of juvenile individuals of closely related but non-microcephalic sea snakes. Our findings suggest that heterochronic changes (resulting in pedomorphosis) have driven cranial shape convergence in response to dietary specializations in sea snakes. 
    more » « less
  3. Abstract Taxonomic classification is important for understanding the natural world, yet current methods for species assessment often focus on craniodental morphology rather than the entire skeleton. Moreover, it is currently unknown how much variation could, or should, exist intragenerically. Here, we tested whether taxonomy can be accurately predicted based on patterns of morphological variation in macaques (H1) and whether postcranial bones reflect subgeneric macaque taxonomy similarly, or better, than the cranium (H2). Data included 3D scans of cranial and postcranial bones for eight macaque species (Macaca arctoides,Macaca fascicularis,Macaca fuscata,Macaca mulatta,Macaca nemestrina,Macaca nigra,Macaca radiata, andMacaca sylvanus). Fixed anatomical and semilandmarks were applied to scans of eight skeletal elements (crania = 45; mandible = 31; scapula = 66; humerus = 38; radius = 33; os coxa = 28; femur = 40; tibia = 40). For each skeletal element, regression analyses were performed to minimize the effects of sexual dimorphism. Between‐groups principal components analysis was used to visualize the major patterns of among‐species morphological variation, while the strength of correct taxon classification was measured with discriminant function analysis. Results suggested accepting the alternate hypothesis that different macaque species can be distinguished morphologically. Both cranial and many postcranial elements appeared to possess a taxonomic signal, and the limb bones—especially the upper limb—are reported to be more useful for taxonomic assessment than previously realized. Theoretically, certain behaviors and/or ecogeographical factors, as well as phylogeny, influenced skeletal morphology in macaques, likely contributing to taxonomic distinctions among different species. 
    more » « less
  4. Abstract Size and shape are often considered important variables that lead to variation in performance. In studies of feeding, size‐corrected metrics of the skull are often used as proxies of biting performance; however, few studies have examined the relationship between cranial shape in its entirety and estimated bite force across species and how dietary ecologies may affect these variables differently. Here, we used geometric morphometric and phylogenetic comparative approaches to examine relationships between cranial morphology and estimated bite force in the carnivoran clade Musteloidea. We found a strong relationship between cranial size and estimated bite force but did not find a significant relationship between cranial shape and size‐corrected estimated bite force. Many‐to‐one mapping of form to function may explain this pattern because a variety of evolutionary shape changes rather than a single shape change may have contributed to an increase in relative biting ability. We also found that dietary ecologies influenced cranial shape evolution but did not influence cranial size nor size‐corrected bite force evolution. Although musteloids with different diets exhibit variation in cranial shapes, they have similar estimated bite forces suggesting that other feeding performance metrics and potentially nonfeeding traits are also important contributors to cranial evolution. We postulate that axial and appendicular adaptations and the interesting feeding behaviours reported for species within this group also facilitate different dietary ecologies between species. Future work integrating cranial, axial and appendicular form and function with behavioural observations will reveal further insights into the evolution of dietary ecologies and other ecological variables. 
    more » « less
  5. Abstract Early life behaviors have a profound role in shaping adult craniofacial morphology. During early life, all mammals undergo the dynamic transition from suckling to mastication, a period coinciding with rapid cranial biomineralization. Osteogenesis imperfecta (OI), a genetic disorder that impacts the production of type I collagen, disrupts biomineralization, leading to craniofacial growth differences affecting quality of life. This study investigates craniofacial development during infant oral motor developmental stages in OI mice compared to unaffected wild‐type littermates (WT mice). We hypothesize OI mice will exhibit smaller overall size, and the adult OI phenotype will develop postnatally in response to masticatory loading. Point cloud and fixed landmarks were collected from micro‐computed tomography scans, then geometric morphometric analyses and interlandmark distances (ILDs) compared craniofacial size and shape between OI and WT mice at birth (P0;n = 27 OI murine/20 WT) and postnatal Days 7 (P7;n = 21/21), 14 (P14;n = 16/20), 21 (P21;n = 20/26), and 28 (P28;n = 26/33). This study found no size and shape differences between genotypes at birth. Starting at P7, OI mice are significantly (p < 0.05) smaller and display pronounced shape changes (p < 0.001) characterized by a larger neurocranium and a shorter viscerocranium. At P21, significant differences emerge in cranial base orientation, neurocranial width, viscerocranial shortening, and zygomatic arch displacement. These findings underscore the importance of early life oral motor stages in developing the adult OI craniofacial phenotype and oral health, suggesting earlier craniofacial interventions may improve effective treatment of OI. 
    more » « less