skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Early life functional transitions impact craniofacial morphology in osteogenesis imperfecta
Abstract Early life behaviors have a profound role in shaping adult craniofacial morphology. During early life, all mammals undergo the dynamic transition from suckling to mastication, a period coinciding with rapid cranial biomineralization. Osteogenesis imperfecta (OI), a genetic disorder that impacts the production of type I collagen, disrupts biomineralization, leading to craniofacial growth differences affecting quality of life. This study investigates craniofacial development during infant oral motor developmental stages in OI mice compared to unaffected wild‐type littermates (WT mice). We hypothesize OI mice will exhibit smaller overall size, and the adult OI phenotype will develop postnatally in response to masticatory loading. Point cloud and fixed landmarks were collected from micro‐computed tomography scans, then geometric morphometric analyses and interlandmark distances (ILDs) compared craniofacial size and shape between OI and WT mice at birth (P0;n = 27 OI murine/20 WT) and postnatal Days 7 (P7;n = 21/21), 14 (P14;n = 16/20), 21 (P21;n = 20/26), and 28 (P28;n = 26/33). This study found no size and shape differences between genotypes at birth. Starting at P7, OI mice are significantly (p < 0.05) smaller and display pronounced shape changes (p < 0.001) characterized by a larger neurocranium and a shorter viscerocranium. At P21, significant differences emerge in cranial base orientation, neurocranial width, viscerocranial shortening, and zygomatic arch displacement. These findings underscore the importance of early life oral motor stages in developing the adult OI craniofacial phenotype and oral health, suggesting earlier craniofacial interventions may improve effective treatment of OI.  more » « less
Award ID(s):
2236027
PAR ID:
10573619
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
The Anatomical Record
ISSN:
1932-8486
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. At birth, mammals experience a massive colonization by microorganisms. We previously reported that newborn mice gestated and born germ-free (GF) have increased microglial labeling and alterations in developmental neuronal cell death in the hippocampus and hypothalamus, as well as greater forebrain volume and body weight when compared to conventionally colonized (CC) mice. To test whether these effects are solely due to differences in postnatal microbial exposure, or instead may be programmedin utero, we cross-fostered GF newborns immediately after birth to CC dams (GF→CC) and compared them to offspring fostered within the same microbiota status (CC→CC, GF→GF). Because key developmental events (including microglial colonization and neuronal cell death) shape the brain during the first postnatal week, we collected brains on postnatal day (P) 7. To track gut bacterial colonization, colonic content was also collected and subjected to 16S rRNA qPCR and Illumina sequencing. In the brains of GF→GF mice, we replicated most of the effects seen previously in GF mice. Interestingly, the GF brain phenotype persisted in GF→CC offspring for almost all measures. In contrast, total bacterial load did not differ between the CC→CC and GF→CC groups on P7, and bacterial community composition was also very similar, with a few exceptions. Thus, GF→CC offspring had altered brain development during at least the first 7 days after birth despite a largely normal microbiota. This suggests that prenatal influences of gestating in an altered microbial environment programs neonatal brain development. 
    more » « less
  2. Polycyclic aromatic hydrocarbons are ubiquitous air pollutants, with additional widespread exposure in the diet. PAH exposure has been linked to adverse birth outcomes and long-term neurological consequences. To understand genetic differences that could affect susceptibility following developmental exposure to polycyclic aromatic hydrocarbons, we exposed mice with variations in the aryl hydrocarbon receptor and the three CYP1 enzymes from gestational day 10 (G10) to weaning at postnatal day 25 (P25). We found unexpectedly high neonatal lethality in high-affinity AhrbCyp1b1(-/-) knockout mice compared with all other genotypes. Over 60% of BaP-exposed pups died within their first 5 days of life. There was a significant effect of BaP on growth rates in surviving pups, with lower weights observed from P7 to P21. Again, AhrbCyp1b1(-/-) knockout mice were the most susceptible to growth retardation. Independent of treatment, this line of mice also had impaired development of the surface righting reflex. We used high-resolution mass spectrometry to measure BaP and metabolites in tissues from both dams and pups. We found the highest BaP levels in adipose from poor-affinity AhrdCyp1a2(-/-) dams and identified three major BaP metabolites (BaP-7-OH, BaP-9-OH, and BaP-4,5-diol), but our measurements were limited to a single time point. Future work is needed to understand BaP pharmacokinetics in the contexts of gestation and lactation and how differential metabolism leads to adverse developmental outcomes. 
    more » « less
  3. Abstract The ontogeny of feeding is characterized by shifting functional demands concurrent with changes in craniofacial anatomy; relationships between these factors will look different in primates with disparate feeding behaviors during development. This study examines the ontogeny of skull morphology and jaw leverage in tufted (Sapajus) and untufted (Cebus) capuchin monkeys. UnlikeCebus,Sapajushave a mechanically challenging diet and behavioral observations of juvenileSapajussuggest these foods are exploited early in development. Landmarks were placed on three‐dimensional surface models of an ontogenetic series ofSapajusandCebusskulls (n = 53) and used to generate shape data and jaw‐leverage estimates across the tooth row for three jaw‐closing muscles (temporalis, masseter, medial pterygoid) as well as a weighted combined estimate. Using geometric morphometric methods, we found that skull shape diverges early and shape is significantly different betweenSapajusandCebusthroughout ontogeny. Additionally, jaw leverage varies with age and position on the tooth row and is greater inSapajuscompared toCebuswhen calculated at the permanent dentition. We used two‐block partial least squares analyses to identify covariance between skull shape and each of our jaw muscle leverage estimates.Sapajus, but notCebus, has significant covariance between all leverage estimates at the anterior dentition. Our findings show thatSapajusandCebusexhibit distinct craniofacial morphologies early in ontogeny and strong covariance between leverage estimates and craniofacial shape inSapajus. These results are consistent with prior behavioral and comparative work suggesting these differences are a function of selection for exploiting mechanically challenging foods inSapajus, and further emphasize that these differences appear quite early in ontogeny. This research builds on prior work that has highlighted the importance of understanding ontogeny for interpreting adult morphology. 
    more » « less
  4. Early-life adversity, even when transient, can have lasting effects on individual phenotypes and reduce lifespan across species. If these effects can be mitigated by a high-quality later-life environment, then differences in future resources may explain variable resilience to early-life adversity. Using data from over 1000 wild North American red squirrels, we tested the hypothesis that the costs of early-life adversity for adult lifespan could be offset by later-life food abundance. We identified six adversities that reduced juvenile survival in the first year of life, though only one—birth date—had continued independent effects on adult lifespan. We then built a weighted early-life adversity (wELA) index integrating the sum of adversities and their effect sizes. Greater weighted early-life adversity predicted shorter adult lifespans in males and females, but a naturally occurring food boom in the second year of life ameliorated this effect. Experimental food supplementation did not replicate this pattern, despite increasing lifespan, indicating that the buffering effect of a future food boom may hinge on more than an increase in available calories. Our results suggest a non-deterministic role of early-life conditions for later-life phenotype, highlighting the importance of evaluating the consequences of early-life adversity in the context of an animal's entire life course. 
    more » « less
  5. Abstract Early life adversity predicts shorter adult lifespan in several animal taxa. Yet, work on long‐lived primate populations suggests the evolution of mechanisms that contribute to resiliency and long lives despite early life insults. Here, we tested associations between individual and cumulative early life adversity and lifespan on rhesus macaques at the Cayo Santiago Biological Field Station using 50 years of demographic data. We performed sex‐specific survival analyses at different life stages to contrast short‐term effects of adversity (i.e., infant survival) with long‐term effects (i.e., adult survival). Female infants showed vulnerability to multiple adversities at birth, but affected females who survived to adulthood experienced a reduced risk later in life. In contrast, male infants showed vulnerability to a lower number of adversities at birth, but those who survived to adulthood were negatively affected by both early life individual and cumulative adversity. Our study shows profound immediate effects of insults  on female infant cohorts and suggests that affected female adults are more robust. In contrast, adult males who experienced harsh conditions early in life showed an increased mortality risk at older ages as expected from hypotheses within the life course perspective. Our analysis suggests sex‐specific selection pressures on life histories and highlights the need for studies addressing the effects of early life adversity across multiple life stages. 
    more » « less