Neuro-symbolic models combine deep learning and symbolic reasoning to produce better-performing hybrids. Not only do neuro-symbolic models perform better, but they also deal better with data scarcity, enable the direct incorporation of high-level domain knowledge, and are more explainable. However, these benefits come at the cost of increased complexity, which may deter the uninitiated from using these models. In this work, we present a framework to simplify the creation of neuro-symbolic models for tree crown delineation and tree species classification via the use of object-oriented programming and hyperparameter tuning algorithms. We show that models created using our framework outperform their non-neuro-symbolic counterparts by as much as two F1 points for crown delineation and three F1 points for species classification. Furthermore, our use of hyperparameter tuning algorithms allows users to experiment with multiple formulations of domain knowledge without the burden of manual tuning.
more »
« less
Neuro-Causal Models
We describe a novel neuro-symbolic model architecture we term "neuro-causal models," that uses a synthesis of deep generative models and causal graphical models to automatically infer higher level symbolic information from lower level "raw features", while also allowing for rich relationships among the symbolic variables.
more »
« less
- PAR ID:
- 10530102
- Editor(s):
- Hitzler, P; Sarker, MK; Eberhart, A
- Publisher / Repository:
- IOS Press
- Date Published:
- Journal Name:
- Frontiers in Artificial Intelligence and Applications
- Volume:
- 369
- ISSN:
- 978-1-64368-406-2
- Page Range / eLocation ID:
- 153-177
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We present Neural Probabilistic Soft Logic (NeuPSL), a novel neuro-symbolic (NeSy) framework that unites state-of-the-art symbolic reasoning with the low-level perception of deep neural networks. To explicitly model the boundary between neural and symbolic representations, we introduce NeSy Energy-Based Models, a general family of energy-based models that combine neural and symbolic reasoning. Using this framework, we show how to seamlessly integrate neural and symbolic parameter learning and inference. We perform an extensive empirical evaluation and show that NeuPSL outperforms existing methods on joint inference and has significantly lower variance in almost all settings.more » « less
-
Leonardis, Aleš; Ricci, Elisa; Roth, Stefan; Russakovsky, Olga; Sattler, Torsten; Varol, Gül (Ed.)Learning to infer labels in an open world, i.e., in an environment where the target “labels” are unknown, is an important characteristic for achieving autonomy. Foundation models, pre-trained on enormous amounts of data, have shown remarkable generalization skills through prompting, particularly in zero-shot inference. However, their performance is restricted to the correctness of the target label’s search space, i.e., candidate labels provided in the prompt. This target search space can be unknown or exceptionally large in an open world, severely restricting their performance. To tackle this challenging problem, we propose a two-step, neuro-symbolic framework called ALGO - Action Learning with Grounded Object recognition that uses symbolic knowledge stored in large-scale knowledge bases to infer activities in egocentric videos with limited supervision. First, we propose a neuro-symbolic prompting approach that uses object-centric vision-language models as a noisy oracle to ground objects in the video through evidence-based reasoning. Second, driven by prior commonsense knowledge, we discover plausible activities through an energy-based symbolic pattern theory framework and learn to ground knowledge-based action (verb) concepts in the video. Extensive experiments on four publicly available datasets (EPIC-Kitchens, GTEA Gaze, GTEA Gaze Plus, and Charades-Ego) demonstrate its performance on open-world activity inference. ALGO can be extended to zero-shot inference and demonstrate its competitive performance.more » « less
-
This tutorial will provide an overview of recent advances on neuro-symbolic approaches for information retrieval. A decade ago, knowledge graphs and semantic annotations technology led to active re- search on how to best leverage symbolic knowledge. At the same time, neural methods have demonstrated to be versatile and highly effective. From a neural network perspective, the same representation approach can service document ranking or knowledge graph reasoning. End-to-end training allows to optimize complex methods for downstream tasks. We are at the point where both the symbolic and the neural research advances are coalescing into neuro-symbolic approaches. The underlying research questions are how to best combine symbolic and neural ap- proaches, what kind of symbolic/neural approaches are most suitable for which use case, and how to best integrate both ideas to advance the state of the art in information retrieval.more » « less
-
Humans have the remarkable ability to recognize and acquire novel visual concepts in a zero-shot manner. Given a high-level, symbolic description of a novel concept in terms of previously learned visual concepts and their relations, humans can recognize novel concepts without seeing any examples. Moreover, they can acquire new concepts by parsing and communicating symbolic structures using learned visual concepts and relations. Endowing these capabilities in machines is pivotal in improving their generalization capability at inference time. We introduced Zero-shot Concept Recognition and Acquisition (ZeroC), a neuro-symbolic architecture that can recognize and acquire novel concepts in a zero-shot way. ZeroC represents concepts as graphs of constituent concept models (as nodes) and their relations (as edges). To allow inference time composition, we employed energy-based models (EBMs) to model concepts and relations. We designed ZeroC architecture so that it allows a one-to-one mapping between a symbolic graph structure of a concept and its corresponding EBM, which for the first time, allows acquiring new concepts, communicating its graph structure, and applying it to classification and detection tasks (even across domains) at inference time. We introduced algorithms for learning and inference with ZeroC. We evaluated ZeroC on a challenging grid-world dataset which is designed to probe zero-shot concept recognition and acquisition, and demonstrated its capability.more » « less
An official website of the United States government

