Abstract We present13CO(J= 1 → 0) observations for the EDGE-CALIFA survey, which is a mapping survey of 126 nearby galaxies at a typical spatial resolution of 1.5 kpc. Using detected12CO emission as a prior, we detect13CO in 41 galaxies via integrated line flux over the entire galaxy and in 30 galaxies via integrated line intensity in resolved synthesized beams. Incorporating our CO observations and optical IFU spectroscopy, we perform a systematic comparison between the line ratio and the properties of the stars and ionized gas. Higher values are found in interacting galaxies compared to those in noninteracting galaxies. The global slightly increases with infrared colorF60/F100but appears insensitive to other host-galaxy properties such as morphology, stellar mass, or galaxy size. We also present azimuthally averaged profiles for our sample up to a galactocentric radius of 0.4r25(∼6 kpc), taking into account the13CO nondetections by spectral stacking. The radial profiles of are quite flat across our sample. Within galactocentric distances of 0.2r25, the azimuthally averaged increases with the star formation rate. However, Spearman rank correlation tests show the azimuthally averaged does not strongly correlate with any other gas or stellar properties in general, especially beyond 0.2r25from the galaxy centers. Our findings suggest that in the complex environments in galaxy disks, is not a sensitive tracer for ISM properties. Dynamical disturbances, like galaxy interactions or the presence of a bar, also have an overall impact on , which further complicates the interpretations of variations.
more »
« less
Solutions to the constant Yang–Baxter equation: additive charge conservation in three dimensions
We find all solutions to the constant Yang–Baxter equation in three dimensions, subject to an additive charge-conservation (ACC) ansatz. This ansatz is a generalization of (strict) charge-conservation, for which a complete classification in all dimensions was recently obtained. ACC introduces additional sector-coupling parameters—in three dimensions, there are four such parameters. In the generic dimension 3 case, in which all of the four parameters are non-zero, we find there is a single three parameter family of solutions. We give a complete analysis of this solution, giving the structure of the centralizer (symmetry) algebra in all orders. We also solve the remaining cases with three, two or one non-zero sector-coupling parameter(s).
more »
« less
- Award ID(s):
- 2205962
- PAR ID:
- 10530130
- Publisher / Repository:
- Royal Society, Proceedings A
- Date Published:
- Journal Name:
- Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
- Volume:
- 480
- Issue:
- 2294
- ISSN:
- 1471-2946
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Charge density wave (CDW) ordering has been an important topic of study for a long time owing to its connection with other exotic phases such as superconductivity and magnetism. The$$R{\textrm{Te}}_{3}$$ (R= rare-earth elements) family of materials provides a fertile ground to study the dynamics of CDW in van der Waals layered materials, and the presence of magnetism in these materials allows to explore the interplay among CDW and long range magnetic ordering. Here, we have carried out a high-resolution angle-resolved photoemission spectroscopy (ARPES) study of a CDW material$${\textrm{Gd}}{\textrm{Te}}_{3}$$ , which is antiferromagnetic below$$\sim \mathrm {12~K}$$ , along with thermodynamic, electrical transport, magnetic, and Raman measurements. Our ARPES data show a two-fold symmetric Fermi surface with both gapped and ungapped regions indicative of the partial nesting. The gap is momentum dependent, maximum along$${\overline{\Gamma }}-\mathrm{\overline{Z}}$$ and gradually decreases going towards$${\overline{\Gamma }}-\mathrm{\overline{X}}$$ . Our study provides a platform to study the dynamics of CDW and its interaction with other physical orders in two- and three-dimensions.more » « less
-
Abstract A measurement of the dijet production cross section is reported based on proton–proton collision data collected in 2016 at$$\sqrt{s}=13\,\text {Te}\hspace{-.08em}\text {V} $$ by the CMS experiment at the CERN LHC, corresponding to an integrated luminosity of up to 36.3$$\,\text {fb}^{-1}$$ . Jets are reconstructed with the anti-$$k_{\textrm{T}} $$ algorithm for distance parameters of$$R=0.4$$ and 0.8. Cross sections are measured double-differentially (2D) as a function of the largest absolute rapidity$$|y |_{\text {max}} $$ of the two jets with the highest transverse momenta$$p_{\textrm{T}}$$ and their invariant mass$$m_{1,2} $$ , and triple-differentially (3D) as a function of the rapidity separation$$y^{*} $$ , the total boost$$y_{\text {b}} $$ , and either$$m_{1,2} $$ or the average$$p_{\textrm{T}}$$ of the two jets. The cross sections are unfolded to correct for detector effects and are compared with fixed-order calculations derived at next-to-next-to-leading order in perturbative quantum chromodynamics. The impact of the measurements on the parton distribution functions and the strong coupling constant at the mass of the$${\text {Z}} $$ boson is investigated, yielding a value of$$\alpha _\textrm{S} (m_{{\text {Z}}}) =0.1179\pm 0.0019$$ .more » « less
-
Abstract We present Keck Planet Imager and Characterizer (KPIC) high-resolution (R∼35,000)K-band thermal emission spectroscopy of the ultrahot Jupiter WASP-33b. The use of KPIC’s single-mode fibers greatly improves both blaze and line-spread stabilities relative to slit spectrographs, enhancing the cross-correlation detection strength. We retrieve the dayside emission spectrum with a nested-sampling pipeline, which fits for orbital parameters, the atmospheric pressure–temperature profile, and the molecular abundances. We strongly detect the thermally inverted dayside and measure mass-mixing ratios for CO ( ), H2O ( ), and OH ( ), suggesting near-complete dayside photodissociation of H2O. The retrieved abundances suggest a carbon- and possibly metal-enriched atmosphere, with a gas-phase C/O ratio of , consistent with the accretion of high-metallicity gas near the CO2snow line and post-disk migration or with accretion between the soot and H2O snow lines. We also find tentative evidence for12CO/13CO ∼ 50, consistent with values expected in protoplanetary disks, as well as tentative evidence for a metal-enriched atmosphere (2–15 × solar). These observations demonstrate KPIC’s ability to characterize close-in planets and the utility of KPIC’s improved instrumental stability for cross-correlation techniques.more » « less
-
A theoretical analysis on crack formation and propagation was performed based on the coupling between the electrochemical process, classical elasticity, and fracture mechanics. The chemical potential of oxygen, thus oxygen partial pressure, at the oxygen electrode-electrolyte interface ( ) was investigated as a function of transport properties, electrolyte thickness and operating conditions (e.g., steam concentration, constant current, and constant voltage). Our analysis shows that: a lower ionic area specific resistance (ASR), and a higher electronic ASR ( ) of the oxygen electrode/electrolyte interface are in favor of suppressing crack formation. The thus local pO2, are sensitive towards the operating parameters under galvanostatic or potentiostatic electrolysis. Constant current density electrolysis provides better robustness, especially at a high current density with a high steam content. While constant voltage electrolysis leads to greater variations of Constant current electrolysis, however, is not suitable for an unstable oxygen electrode because can reach a very high value with a gradually increased A crack may only occur under certain conditions whenmore » « less
An official website of the United States government

