skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Enhanced and generalized one–step Neville algorithm: Fractional powers and access to the convergence rate
The recursive Neville algorithm allows one to calculate interpolating functions recursively. Upon a judicious choice of the abscissas used for the interpolation (and extrapolation), this algorithm leads to a method for convergence acceleration. For example, one can use the Neville algorithm in order to successively eliminate inverse powers of the upper limit of the summation from the partial sums of a given, slowly convergent input series. Here, we show that, for a particular choice of the abscissas used for the extrapolation, one can replace the recursive Neville scheme by a simple one-step transformation, while also obtaining access to subleading terms for the transformed series after convergence acceleration. The matrix-based, unified formulas allow one to estimate the rate of convergence of the partial sums of the input series to their limit. In particular, Bethe logarithms for hydrogen are calculated to 100 decimal digits. Generalizations of the method to series whose remainder terms can be expanded in terms of inverse factorial series, or series with half-integer powers, are also discussed.  more » « less
Award ID(s):
2110294
PAR ID:
10530203
Author(s) / Creator(s):
;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Computer Physics Communications
Volume:
303
Issue:
C
ISSN:
0010-4655
Page Range / eLocation ID:
109280
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract This paper examines a number of extrapolation and acceleration methods and introduces a few modifications of the standard Shanks transformation that deal with general sequences. One of the goals of the paper is to lay out a general framework that encompasses most of the known acceleration strategies. The paper also considers the Anderson Acceleration (AA) method under a new light and exploits a connection with quasi-Newton methods in order to establish local linear convergence results of a stabilized version of the AA method. The methods are tested on a number of problems, including a few that arise from nonlinear partial differential equations. 
    more » « less
  2. For a broad class of models widely used in practice for choice and ranking data based on Luce's choice axiom, including the Bradley--Terry--Luce and Plackett--Luce models, we show that the associated maximum likelihood estimation problems are equivalent to a classic matrix balancing problem with target row and column sums. This perspective opens doors between two seemingly unrelated research areas, and allows us to unify existing algorithms in the choice modeling literature as special instances or analogs of Sinkhorn's celebrated algorithm for matrix balancing. We draw inspirations from these connections and resolve some open problems on the study of Sinkhorn's algorithm. We establish the global linear convergence of Sinkhorn's algorithm for non-negative matrices whenever finite scaling matrices exist, and characterize its linear convergence rate in terms of the algebraic connectivity of a weighted bipartite graph. We further derive the sharp asymptotic rate of linear convergence, which generalizes a classic result of Knight (2008). To our knowledge, these are the first quantitative linear convergence results for Sinkhorn's algorithm for general non-negative matrices and positive marginals. Our results highlight the importance of connectivity and orthogonality structures in matrix balancing and Sinkhorn's algorithm, which could be of independent interest. More broadly, the connections we establish in this paper between matrix balancing and choice modeling could also help motivate further transmission of ideas and lead to interesting results in both disciplines. 
    more » « less
  3. Abstract We consider the Born and inverse Born series for scalar waves with a cubic nonlinearity of Kerr type. We find a recursive formula for the operators in the Born series and prove their boundedness. This result gives conditions which guarantee convergence of the Born series, and subsequently yields conditions which guarantee convergence of the inverse Born series. We also use fixed point theory to give alternate explicit conditions for convergence of the Born series. We illustrate our results with numerical experiments. 
    more » « less
  4. In this article, we propose, analyze and demonstrate a dynamic momentum method to accelerate power and inverse power iterations with minimal computational overhead. The method can be applied to real diagonalizable matrices, is provably convergent with acceleration in the symmetric case, and does not require a priori spectral knowledge. We review and extend background results on previously developed static momentum accelerations for the power iteration through the connection between the momentum accelerated iteration and the standard power iteration applied to an augmented matrix. We show that the augmented matrix is defective for the optimal parameter choice. We then present our dynamic method which updates the momentum parameter at each iteration based on the Rayleigh quotient and two previous residuals. We present convergence and stability theory for the method by considering a power‐like method consisting of multiplying an initial vector by a sequence of augmented matrices. We demonstrate the developed method on a number of benchmark problems, and see that it outperforms both the power iteration and often the static momentum acceleration with optimal parameter choice. Finally, we present and demonstrate an explicit extension of the algorithm to inverse power iterations. 
    more » « less
  5. A pervasive approach in scientific computing is to express the solution to a given problem as the limit of a sequence of vectors or other mathematical objects. In many situations these sequences are generated by slowly converging iterative procedures, and this led practitioners to seek faster alternatives to reach the limit. ‘Acceleration techniques’ comprise a broad array of methods specifically designed with this goal in mind. They started as a means of improving the convergence of general scalar sequences by various forms of ‘extrapolation to the limit’, i.e. by extrapolating the most recent iterates to the limit via linear combinations. Extrapolation methods of this type, the best-known of which is Aitken’s delta-squared process, require only the sequence of vectors as input. However, limiting methods to use only the iterates is too restrictive. Accelerating sequences generated by fixed-point iterations by utilizing both the iterates and the fixed-point mapping itself has proved highly successful across various areas of physics. A notable example of these fixed-point accelerators (FP-accelerators) is a method developed by Donald Anderson in 1965 and now widely known as Anderson acceleration (AA). Furthermore, quasi-Newton and inexact Newton methods can also be placed in this category since they can be invoked to find limits of fixed-point iteration sequences by employing exactly the same ingredients as those of the FP-accelerators. This paper presents an overview of these methods – with an emphasis on those, such as AA, that are geared toward accelerating fixed-point iterations. We will navigate through existing variants of accelerators, their implementations and their applications, to unravel the close connections between them. These connections were often not recognized by the originators of certain methods, who sometimes stumbled on slight variations of already established ideas. Furthermore, even though new accelerators were invented in different corners of science, the underlying principles behind them are strikingly similar or identical. The plan of this article will approximately follow the historical trajectory of extrapolation and acceleration methods, beginning with a brief description of extrapolation ideas, followed by the special case of linear systems, the application to self-consistent field (SCF) iterations, and a detailed view of Anderson acceleration. The last part of the paper is concerned with more recent developments, including theoretical aspects, and a few thoughts on accelerating machine learning algorithms. 
    more » « less