Abstract The rise of Large Language Models (LLMs) and generative visual analytics systems has transformed data‐driven insights, yet significant challenges persist in accurately interpreting users analytical and interaction intents. While language inputs offer flexibility, they often lack precision, making the expression of complex intents inefficient, error‐prone, and time‐intensive. To address these limitations, we investigate the design space of multimodal interactions for generative visual analytics through a literature review and pilot brainstorming sessions. Building on these insights, we introduce a highly extensible workflow that integrates multiple LLM agents for intent inference and visualization generation. We develop InterChat, a generative visual analytics system that combines direct manipulation of visual elements with natural language inputs. This integration enables precise intent communication and supports progressive, visually driven exploratory data analyses. By employing effective prompt engineering, and contextual interaction linking, alongside intuitive visualization and interaction designs, InterChat bridges the gap between user interactions and LLM‐driven visualizations, enhancing both interpretability and usability. Extensive evaluations, including two usage scenarios, a user study, and expert feedback, demonstrate the effectiveness of InterChat. Results show significant improvements in the accuracy and efficiency of handling complex visual analytics tasks, highlighting the potential of multimodal interactions to redefine user engagement and analytical depth in generative visual analytics.
more »
« less
Leveraging Machine Learning to Analyze Semantic User Interactions in Visual Analytics
In the field of visualization, understanding users’ analytical reasoning is important for evaluating the effectiveness of visualization applications. Several studies have been conducted to capture and analyze user interactions to comprehend this reasoning process. However, few have successfully linked these interactions to users’ reasoning processes. This paper introduces an approach that addresses the limitation by correlating semantic user interactions with analysis decisions using an interactive wire transaction analysis system and a visual state transition matrix, both designed as visual analytics applications. The system enables interactive analysis for evaluating financial fraud in wire transactions. It also allows mapping captured user interactions and analytical decisions back onto the visualization to reveal their decision differences. The visual state transition matrix further aids in understanding users’ analytical flows, revealing their decision-making processes. Classification machine learning algorithms are applied to evaluate the effectiveness of our approach in understanding users’ analytical reasoning process by connecting the captured semantic user interactions to their decisions (i.e., suspicious, not suspicious, and inconclusive) on wire transactions. With the algorithms, an average of 72% accuracy is determined to classify the semantic user interactions. For classifying individual decisions, the average accuracy is 70%. Notably, the accuracy for classifying ‘inconclusive’ decisions is 83%. Overall, the proposed approach improves the understanding of users’ analytical decisions and provides a robust method for evaluating user interactions in visualization tools.
more »
« less
- Award ID(s):
- 2107451
- PAR ID:
- 10530349
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- Information
- Volume:
- 15
- Issue:
- 6
- ISSN:
- 2078-2489
- Page Range / eLocation ID:
- 351
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Visual analytics systems enable highly interactive exploratory data analysis. Across a range of fields, these technologies have been successfully employed to help users learn from complex data. However, these same exploratory visualization techniques make it easy for users to discover spurious findings. This paper proposes new methods to monitor a user’s analytic focus during visual analysis of structured datasets and use it to surface relevant articles that contextualize the visualized findings. Motivated by interactive analyses of electronic health data, this paper introduces a formal model of analytic focus, a computational approach to dynamically update the focus model at the time of user interaction, and a prototype application that leverages this model to surface relevant medical publications to users during visual analysis of a large corpus of medical records. Evaluation results with 24 users show that the modeling approach has high levels of accuracy and is able to surface highly relevant medical abstracts.more » « less
-
Quantifying user performance with metrics such as time and accuracy does not show the whole picture when researchers evaluate complex, interactive visualization tools. In such systems, performance is often influenced by different analysis strategies that statistical analysis methods cannot account for. To remedy this lack of nuance, we propose a novel analysis methodology for evaluating complex interactive visualizations at scale. We implement our analysis methods in reVISit, which enables analysts to explore participant interaction performance metrics and responses in the context of users' analysis strategies. Replays of participant sessions can aid in identifying usability problems during pilot studies and make individual analysis processes salient. To demonstrate the applicability of reVISit to visualization studies, we analyze participant data from two published crowdsourced studies. Our findings show that reVISit can be used to reveal and describe novel interaction patterns, to analyze performance differences between different analysis strategies, and to validate or challenge design decisions.more » « less
-
We present P5, a web-based visualization toolkit that combines declarative visualization grammar and GPU computing for progressive data analysis and visualization. To interactively analyze and explore big data, progressive analytics and visualization methods have recently emerged. Progressive visualizations of incrementally refining results have the advantages of allowing users to steer the analysis process and make early decisions. P5 leverages declarative grammar for specifying visualization designs and exploits GPU computing to accelerate progressive data processing and rendering. The declarative specifications can be modified during progressive processing to create different visualizations for analyzing the intermediate results. To enable user interactions for progressive data analysis, P5 utilizes the GPU to automatically aggregate and index data based on declarative interaction specifications to facilitate effective interactive visualization. We demonstrate the effectiveness and usefulness of P5 through a variety of example applications and several performance benchmark tests.more » « less
-
For applications where multiple stakeholders provide recommendations, a fair consensus ranking must not only ensure that the preferences of rankers are well represented, but must also mitigate disadvantages among socio-demographic groups in the final result. However, there is little empirical guidance on the value or challenges of visualizing and integrating fairness metrics and algorithms into human-in-the-loop systems to aid decision-makers. In this work, we design a study to analyze the effectiveness of integrating such fairness metrics-based visualization and algorithms. We explore this through a task-based crowdsourced experiment comparing an interactive visualization system for constructing consensus rankings, ConsensusFuse, with a similar system that includes visual encodings of fairness metrics and fair-rank generation algorithms, FairFuse. We analyze the measure of fairness, agreement of rankers’ decisions, and user interactions in constructing the fair consensus ranking across these two systems. In our study with 200 participants, results suggest that providing these fairness-oriented support features nudges users to align their decision with the fairness metrics while minimizing the tedious process of manually having to amend the consensus ranking. We discuss the implications of these results for the design of next-generation fairness oriented-systems and along with emerging directions for future research.more » « less
An official website of the United States government

