skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Reprocessing of Legacy Seismic Reflection Profile Data and Its Implications for Plate Flexure in the Vicinity of the Hawaiian Islands
Abstract During 1975–1988, an academic research ship, R/VRobert D.Conrad, acquired more than 150,000‐line‐km of multichannel seismic reflection profile data from each of the world's main ocean basins and their margins. This extensive legacy seismic data set, which involved both single ship and two‐ship data acquisition, has been widely used by the marine geoscience community. We report on our experience in reprocessing seismic reflection profile data acquired duringConradcruise RC2308 to the Hawaiian Islands region in August/September 1982. We show that the application of modern, industry standard processing techniques, including filtering, de‐bubble, deconvolution, and migration, can significantly enhance 40+ year old legacy seismic reflection profile data. The reprocessed data reveals more precisely, and with much less scatter, the flexure of Cretaceous Pacific oceanic crust caused by the Pliocene‐Recent volcanic loads that comprise the Hawaiian Islands. A comparison of observed picks of top oceanic crust which has been corrected for the Hawaiian swell and the Molokai Fracture Zone with the calculations of a simple 3‐dimensional elastic plate (flexure) model reveals a best fit elastic plate thickness of the lithosphere,Te, of 26.7 km, an average infill density of 2,701 kg m−3, and a Root Mean Square difference between observations and calculations of 305 m. Tests show these results depend weakly on the load density assumed and that the average infill density is close to what would be predicted from an arithmetic average of the flanking moat infill density and the infill density that immediately underlies the volcanic edifice.  more » « less
Award ID(s):
2051501
PAR ID:
10530593
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
American Geophysical Union
Date Published:
Journal Name:
Journal of Geophysical Research: Solid Earth
Volume:
128
Issue:
9
ISSN:
2169-9313
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The Hawaiian Ridge has long been a focus site for studying lithospheric flexure due to intraplate volcano loading, but crucial load and flexure details remain unclear. We address this problem using wide‐angle seismic refraction and reflection data acquired along a ∼535‐km‐long profile that intersects the ridge between the islands of Maui and Hawai'i and crosses 80–95 Myr‐old lithosphere. A tomographic image constructed using travel time data of several seismic phases reveals broad flexure of Pacific oceanic crust extending up to ∼200–250 km either side of the Hawaiian Ridge, and vertically up to ∼6–7 km. TheP‐wave velocity structure, verified by gravity modeling, reveals that the west flank of Hawaii is comprised of extrusive lavas overlain by volcanoclastic sediments and a carbonate platform. In contrast, the Hāna Ridge, southeast of Maui, contains a high‐velocity core consistent with mafic or ultramafic intrusive rocks. Magmatic underplating along the seismic line is not evident. Reflectors at the top and bottom of the pre‐existing oceanic crust suggest a ∼4.5–6 km crustal thickness. Simple three‐dimensional flexure modeling with an elastic plate thickness,Te, of 26.7 km shows that the depths to the reflectors beneath the western flank of Hawai'i can be explained by volcano loading in which Maui and the older islands in the ridge contribute ∼43% to the flexure and the island of Hawai'i ∼51%. Previous studies, however, revealed a higherTebeneath the eastern flank of Hawai'i suggesting that isostatic compensation may not yet be complete at the youngest end of the ridge. 
    more » « less
  2. Abstract The Hawaiian Ridge, a classic intraplate volcanic chain in the Central Pacific Ocean, has long attracted researchers due to its origin, eruption patterns, and impact on lithospheric deformation. Thought to arise from pressure‐release melting within a mantle plume, its mass‐induced deformation of Earth's surface depends on load distribution and lithospheric properties, including elastic thickness (Te). To investigate these features, a marine geophysical campaign was carried out across the Hawaiian Ridge in 2018. Westward of the island of O'ahu, a seismic tomographic image, validated by gravity data, reveals a large mass of volcanic material emplaced on the oceanic crust, flanked by an apron of volcaniclastic material filling the moat created by plate flexure. The ridge adds ∼7 km of material to pre‐existing ∼6‐km‐thick oceanic crust. A high‐velocity and high‐density core resides within the volcanic edifice, draped by alternating lava flows and mass wasting material. Beneath the edifice, upper mantle velocities are slightly higher than that of the surrounding mantle, and there is no evidence of extensive magmatic underplating of the crust. There is ∼3.5 km of downward deflection of the sediment‐crust and crust‐mantle boundaries due to flexure in response to the volcanic load. At Ka'ena Ridge, the volcanic edifice's height and cross‐sectional area are no more than half as large as those determined at Hawai'i Island. Together, these studies confirm that volcanic loads to the west of Hawai'i are largely compensated by flexure. Comparisons to the Emperor Seamount Chain confirm the Hawaiian Ridge's relatively stronger lithospheric rigidity. 
    more » « less
  3. NA (Ed.)
    Abstract Marine multichannel and wide‐angle seismic data constrain the distribution of seamounts, sediment cover sequence and crustal structure along a 460 km margin‐parallel transect of the Hikurangi Plateau. Seismic reflection data reveals five seamount up‐to 4.5 km high and 35–75 km wide, with heterogeneous internal velocity structure. Sediment cover decreases south‐to‐north from ∼4.5 km to ∼1–2 km. The Hikurangi Plateau crust (VP5.5–7.5 km/s) is 11 ± 1 km thick in the south, but thins by 3–4 km further north (∼7–8 km). Gravity models constructed along two seismic lines show the reduction in crustal thickness persists further east, coinciding with a bathymetric scarp. Gravity data suggest the transition in crustal thickness may reflect spatial variability in deformation and lithospheric extension associated with plateau breakup. Variability in the thickness of subducting crust may contribute to differences in megathrust geometry, upper‐plate stress state and high‐rates of contraction and uplift along the southern Hikurangi margin. 
    more » « less
  4. SUMMARY Recent modelling studies have shown that laboratory-derived rheology is too strong to reproduce observations of flexure at the Hawaiian Islands, while the same rheology appears consistent with outer rise—trench flexure at circum-Pacific subduction zones. Collectively, these results indicate that the rheology of an oceanic plate boundary is stronger than that of its interior, which, if correct, presents a challenge to understanding the formation of trenches and subduction initiation. To understand this dilemma, we first investigate laboratory-derived rheology using fully dynamic viscoelastic loading models and find that it is too strong to reproduce the observationally inferred elastic thickness, Te, at most plate interior settings. The Te can, however, be explained if the yield stress of low-temperature plasticity is significantly reduced, for example, by reducing the activation energy from 320 kJ mol−1, as in Mei et al., to 190 kJ mol−1 as was required by previous studies of the Hawaiian Islands, implying that the lithosphere beneath Hawaii is not anomalous. Second, we test the accuracy of the modelling methods used to constrain the rheology of subducting lithosphere, including the yield stress envelope (YSE) method, and the broken elastic plate model (BEPM). We show the YSE method accurately reproduces the model Te to within ∼10 per cent error with only modest sensitivity to the assumed strain rate and curvature. Finally, we show that the response of a continuous plate is significantly enhanced when a free edge is introduced at or near an edge load, as in the BEPM, and is sensitive to the degree of viscous coupling at the free edge. Since subducting lithosphere is continuous and generally mechanically coupled to a sinking slab, the BEPM may falsely introduce a weakness and hence overestimate Te at a trench because of trade-off. This could explain the results of recent modelling studies that suggest the rheology of subducting oceanic plate is stronger than that of its interior. However, further studies using more advanced thermal and mechanical models will be required in the future in order to quantify this. 
    more » « less
  5. The history of the Canada Basin is poorly understood due to its isolation by distance and ice. The best available evidence suggests the Canada Basin formed during a 66˚ counterclockwise rotation of Northern Alaska away from the Canadian Arctic Islands during the Mesozoic. Gravity and magnetic anomaly data show a linear feature that has been interpreted as an extinct Mid Ocean Ridge, buried under thick turbidites and other sediments. For this study we collected MCS data to constrain the Canada Basin sedimentation history and crustal structure and improve our understanding of the basin. During the summer of 2021, we collected ~4514 km of multichannel-seismic reflection (MCS) data complemented by sonobuoy and OBS data across Canada Basin, Arctic Ocean. The MCS data were acquired with two 520 cu inch GI air guns and a 200 meter (32 channels) streamer. The MCS data was processed by eliminating bad traces, applying a bandpass filter, an FK filter to minimize coherent noise, an FX filter to reduce random noise. The filtered traces were then corrected for normal moveout. This utilized a velocity model from this study area. We then stacked to strengthen the signal and applied post-stack migration to relocate the reflection signal for the effect of dipping reflectors. The seismic profiles close to the Northwind Ridge in the west show a relatively flat basement, with thinner sediments compared to the seismic profile over the inferred mid-oceanic ridge. The seismic profiles crossing the mid-oceanic ridge show a high relief central valley. The basement parallel to the inferred ridge axis is smooth, suggesting the ridge is unsegmented, which is consistent with an ultra-slow spreading mid-oceanic ridge. Origin as an ultra-slow spreading ridge constrains the history of the basin, for example indicating the magnetic striped section of the seafloor, that has been interpreted as oceanic crust, based on sonobuoy refractions results, required 15 - 30 Ma to form. 
    more » « less